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Abstract: Recent investigations have highlighted, both experimentally and clinically, that probiotic
strains equipped with arabinofuranosidase, in particular abfA and abfB, favor regular intestinal
motility, thus counteracting constipation. By analyzing the gene expression and the proliferative
response in the presence of arabinan of the probiotic B. longum W11, a strain previously validated
as an anti-constipation probiotic, we have speculated that its response mechanism to arabinan can
effectively explain its clinical action. Our approach could be used in the future to select probiotics
endowed with arabinofuranosidase-related anti-constipation effects.
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1. Introduction

Orally administered probiotics are widely used to alleviate functional constipation,
a disorder affecting about 14% of the adult population and 9.5% of children, and recent
meta-analysis reported that probiotic use moderately increases stool frequency and reduces
the whole-gut transit time [1-4]. Probiotic ingestion can modify the gut microbial fermen-
tation leading to a short-chain fatty acids (SCFAs) profile that interacts differently with
the host immune system and enteric nervous system, thus ameliorating gut motility [5].
However, the effect of probiotics in functional constipation seems to be strain dependent [6].
Recently, Zhang et al. showed that B. longum strains possessing the encoding arabinofura-
nosidases cluster abfA can ameliorate functional constipation through enhanced arabinan
utilization in the gut in both mice and humans [7]. Their results would seem to suggest
the existence of a potentially specific therapeutic tool (i.e., B. longum equipped with abfA,
administered together with arabinan fiber) for functional constipation. The B. longum strain
W11 (LMG P-21586), a probiotic presenting intrinsic and non-transferable resistance to
rifaximin [8-10], has also been described as being effective in treating functional constipa-
tion [11-13]. We have, therefore, investigated whether the results describing the role of the
strain W11 in constipation could be linked to the presence and functionality of the same
gene cluster. Three genes putatively encoding arabinofuranosidases have been described
(abfl, abfA, and abfB) [14]. However, we have focused only on abfA and abfB as abfI has
been shown not to affect arabinofuranosyl residues. As shown by our methods and results,
we have evaluated both the presence of two arabinofuranosidases clusters (abfA and abfB)
and their action in metabolizing arabinan which also supports the in vitro growth of the
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probiotic strain. The detection of the genes in the strain genome, their overexpression in
arabinan-enriched medium, and the strain condition-specific in vitro growth have provided
a probable explanation for its effectiveness in constipation.

2. Materials and Methods
2.1. In Silico Evaluation of abfA and abfB Genes Presence in B. Longum W11 Genome

For the in silico evaluation of the presence of the genes abfA and, abfB, we conducted
a search using BV-BRC ver 3.35.5 software employing the deposited sequence of the B.
longum strain W11 (NCBI Accession n° PRJNA356203).

2.2. Viable Counts of B. Longum W11 in Different Sugar-Restricted Media

Growth assays of B. longum W11 were performed in sugar-restricted basal medium [15]
alone (1.0% Bacto peptone, 0.5% Bacto yeast extract, 0.5% sodium acetate trihydrate, 0.2%
diammonium hydrogen citrate, 0.08% L-cysteine hydrochloride monohydrate, 0.02% mag-
nesium sulfate heptahydrate, 1.36% L-ascorbic acid, 0.44% sodium carbonate anhydrous;
all reagents from Merck, Milan, Italy) or supplemented with 2.0% glucose or arabinan
(from sugar beet; Megazyme, MI, USA) [16]. The first viable counts were performed at TO
and after 48 h of incubation at 37 °C under anaerobic conditions. We performed viable
counts according to ISO 29981 /IDF 220:2010, a method for the selective enumeration of
presumptive bifidobacteria in milk products by using a colony count technique at 37 °C
under anaerobic conditions [17].

2.3. RNA Extraction, Quantification and Retro Transcription for Downstream Analysis

An appropriate volume of the TO and of the three tested conditions (no sugar, glucose
and arabinan) at T16, T24 and T48, was collected for the total RNA extraction. The volume
was chosen to reach the cell concentration of 1-2 x 109 bacteria. The cultures were cen-
trifuged, supernatants discarded, and the pellets underwent a lysis phase with 10 mg/mL
of lysozyme and 300 U/mL of mutanolysin for 1 h and 30 min at 37 °C (enzymes from
Merck, Milan, Italy). The Aurum™ Total RNA Mini Kit (Bio-Rad, Hercules, CA, USA)
was used for the isolation and purification of total RNA. The extracted RNA was quanti-
fied through Nanodrop and the Qubit RNA HS assay (Invitrogen, Segrate, Italy). DNA
contamination was checked with the Qubit ds DNA HS assay (Invitrogen, Segrate, Italy).
A treatment with DNase was performed to remove gDNA traces. RNA underwent the
retro transcription using the iScript™ cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA)
following manufacturer instructions.

2.4. gPCR Amplification

Quantitative PCR (qPCR) analysis was performed using StepOne Plus Instrument
(Applied Biosystems, Waltham, MA, USA) with fluorescence signal detection (SYBR green)
after each amplification cycle. PCRs were performed in a 25-uL reaction mixture: 12.5 uL of
Bio-Rad SsoAdvanced Universal mix (Bio-Rad, Hercules, CA, USA), 0.1 (for 16S DNA) or
1 (target genes) ng of cDNA, each forward and reverse primer at the proper concentration
and sufficient nuclease-free water to obtain a final volume of 25 uL. Negative controls
for each primer set were included in each run. Primer sets (165 DNA housekeeping
gene, abfA and abfB) and thermal protocols were assessed as previously described [14].
Gene expression data were analyzed through the AACt method by comparing the relative
concentration of the target gene in the treated sample to that of the control one (B. longum
W11 at T0). Tests were performed in triplicate.

2.5. Statistical Analysis

We performed statistical analysis using the Brown-Forsythe method (Prism- Graph-
Pad, v8). Statistical significance was set for p value < 0.05.
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3. Results

We performed an in silico analysis of the deposited genome sequence of B. longum
W11 to find the abfA and abfB genes. As shown in Figure 1, the bioinformatic research
highlighted the presence of the two genes. We then evaluated the B. longum W11 viable
counts in different sugar-restricted media containing glucose or arabinan at 2% (w/v). As
shown in Table 1, the total counts obtained for B. longum W11 in arabinan-supplemented
medium, in comparison with others, demonstrate that the strain actively metabolized this
sugar, producing a proliferative effect of more than 1 log. We then quantified the abfA and
abfB expression in the presence of arabinan at different time points. The precise RNA and
DNA quantifications are available in Supplementary Table S1. As shown in Figure 2, after
16 h of incubation, the two genes abfA and abfB were overexpressed in the sugar-restricted
medium supplemented with 2% of arabinan. After 24 h (as after 48 h), the overexpression
detected at 16 h was no longer observable. Indeed, as previously described [7], abfA and

abfB seem to be expressed more in the first phase of bacterial growth in the presence of
arabinan.
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Figure 1. In silico evaluation of the presence of abfA and abfB genes.
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Figure 2. abfA and abfB genes’ expression at T0, T16 and T24 in the tested conditions. * p < 0.05;
*3%

p <0.01.
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Table 1. Viable counts at two timepoints (T0 and T24).
Sugar restricted, T0 Sugar restricted, T24
-5 —6 CFU/mL Log (CFUs) -5 —6 CFU/mL Log (CFUs) DL (CFUs)
BLW11 187 15 1.8 x 107 7.3 161 23 1.67 x 107 7.2 0.0
Sugar restricted + glucose, TO Sugar restricted + glucose, T24
-5 —6 CFU/mL Log (CFUs) -7 -8 CFU/mL Log (CFUs) DL (CFUs)
BLW11 175 14 1.7 x 107 7.2 44 6 4.55 x 107 7.7 0.4
Sugar restricted + arabinan, T0O Sugar restricted + arabinan, T24
-5 —6 CFU/mL Log (CFUs) -7 -8 CFU/mL Log (CFUs) DL (CFUs)
BLW11 179 18 1.8 x 107 7.3 82 11 8.45 x 107 8.9 1.7

BLW11: B. longum W11; DL: Delta Log; CFU: Colony Forming Units.

4. Discussion

As recently described, B. longum strains holding the abfA cluster can ameliorate func-
tional constipation in animals and in humans through enhanced arabinan utilization,
metabolically yielding acetate, butyrate, chenodeoxycholic acid, and uracil [7]. Acetate and
butyrate are two SCFAs implicated in improving intestinal motility either by interacting
with G-protein-coupled receptor 41 (GPR41) and G-protein-coupled receptor 43 (GPR43)
or directly acting on colonic smooth muscle [18,19]. Acetate and butyrate producers are
associated with the bile acid level (i.e., chenodeoxycholic acid) in the gut [20,21]. For
patients with irritable bowel syndrome constipation-type (IBS-C), it is reported that treat-
ment with chenodeoxycholic acid can increase stool frequency, improve stool consistency,
and improve ease of stool passage by acting on the membrane-bound G protein-coupled
bile-acid receptor (e.g., TGR5) on enterocytes [22-24]. Similarly, a has been established be-
tween increased microbiota-induced uracil levels and decreased IBS-C disease activity [20].
One can assume that, in the proximal part of the colon, the glucose supply is sufficient
to guarantee the microbial production of SCFAs, bile acids, and uracil. Differently, in the
distal colon, the glucose supply should be exhausted. In this circumstance, microorganisms
equipped with abfA clusters could stably proliferate and produce the beneficial metabolites
above described.

B. longum W11, previously reported to be clinically effective against constipation [10-13]
possesses the abfA and abfB genes and increases the expression of both abfA and abfB genes
in the presence of arabinan. Moreover, B. longum W11 proliferates in the presence of
arabinan. The results seem to be quite specific since the same strain (B. longum W11) does
not increase the amounts of these two genes and does not proliferate in the presence of
glucose. Our results should seem then to indicate a possible mechanism of action by
which the strain W11 counteracts constipation. Moreover, our study demonstrates that
B. longum W11 can be considered a “precision probiotics” [25] since, on a genetic basis, it
presents different and concomitant peculiarities (rifaximin resistant and anti-constipation).
Of course, our results do not exclude that other possible mechanisms of action could
take part in ameliorating such clinical outcome. Having established a certain relationship
between the presence of arabinofuranosidases and the anti-constipation effect, however,
does not mean that any bacterial strain, with reference to those with evident probiotic
characteristics, equipped with the same genes, is capable of anti-constipation efficacy. For
the effect to be clinically observed, it is necessary for the genes to be functional, that the
bacterium equipped with them remains viable inside the host for a sufficiently long time,
and that it finds, in the ecosystem in which it has been introduced, an appropriate quantity
of specific fiber, arabinan, or its potential precursors such as pectin or arabinoxylans [26,27].
As amply demonstrated, the abfA and abfB genes are not present only in the species B.
longum [7]. By in silico analysis, we have explored the presence of this gene cluster in the
probiotic genera like Bacillus and Bifidobacterium and in what until recently was simply
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called Lactobacillus [28]. Our analyses have revealed that this gene cluster is quite present
among probiotics, especially among bifidobacteria. Among the probably most studied and
worldwide marketed probiotic strains, such as the Bacillus clausii ENT—pro®strains [29], B.
animalis lactis BB-12® [30], and L. rhamnosus GG® [31], the latter, reviewed as ineffective in
functional constipation [32,33], does not present arabinofuranosidase genes. In contrast,
B. clausii strains and BB-12® have both been described to have clinical anti-constipation
effects [34-38].

5. Conclusions

Although our work was limited mainly to the B. longum W11 strain, it lays the ground-
work for identifying a rationale between the strain’s ability to metabolize arabinan and
the consequent overexpression of the abfA and abfB genes. This finding could reveal the
mechanism underlying the anti-constipation action exerted by the strain under investiga-
tion. As such, this approach might be used to select or better characterize other probiotics
with the same function. Last but not least, to our knowledge, our work identifies for the
first time the possibility for a “precision probiotic” to be characterized by two completely
unrelated features.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /microorganisms12081626/s1, Supplementary Table S1: RNA and
DNA quantifications.
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