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Abstract
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the supra-
chiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites 
of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount 
of melatonin. Not unexpectedly, melatonin’s many biological properties, such as its antioxidant, anti-inflammatory, pro-
apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and 
more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT’s mucus and saliva, which shields cells 
from damage and promotes the development of certain GIT-related disorders. Melatonin’s ability to alter cellular behavior 
in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters 
the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that 
melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
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Introduction

Melatonin, also known as N-acetyl-5-methoxy tryptamine, 
is a hormone that is produced by the pineal gland and other 
tissues such as the skin, retina, gut, brain, lens, and bone 
marrow. Melatonin is essential for many physiological pro-
cesses including immune modulation, sleep promotion, 
and anti-inflammatory and anticancer effects (Roohbakhsh 
et al. 2018). As an antioxidant agent, melatonin possesses 
anti-inflammatory and anti-excitatory effects by scavenging 
hazardous free radicals formed in the body (Zisapel 2018). 
Oncostatic properties, immune regulation, sleep promotion, 
involvement in mood disorders, controlling of puberty tim-
ing, regulation of reproduction, and transplantation are other 
important functions of melatonin (Ahmad et al. 2023). So, 
any dysfunction in melatonin synthesis or production has 
been demonstrated to be correlated with the initiation of a 
broad range of human disorders including neurodegenera-
tive disorders, circadian rhythm‐related sleep disorders, and 
cancers. Due to its potential analgesic effects, melatonin is 
also applied in pain-associated diseases (Morin 1999). As 
mentioned, it should be noted that melatonin is also synthe-
sized by the enterochromaffin cell of the gastrointestinal tract 
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(GIT). In this organ, melatonin is released into the blood-
stream in reaction to meal consumption. Consequently, the 
GIT has more melatonin than the pineal gland and blood 
circulation due to the size of the digestive system (Sjöblom 
et al. 2001). Consequently, melatonin can be quite essential 
in the GIT due to its high concentration of the hormone per 
gram of tissue (Bubenik 2002). Thus, in this review, we will 
concentrate on the several roles that melatonin plays in the 
GIT. We start our investigation of melatonin’s function in 
the oral cavity by highlighting both its protective and anti-
inflammatory properties. Subsequently, we want to explore 
the many activities of melatonin in the stomach, followed by 
its processes in the intestine and its participation in a variety 
of gut-related diseases. Lastly, we will review the signifi-
cance of melatonin in hunger and provide an outline of how 
it functions in the pancreas and liver, two significant organs 
connected to the gastrointestinal tract.

Melatonin mechanism of action in the oral 
cavity

In the oral cavity, high exposure to reactive oxygen spe-
cies (ROS) and reactive nitrogen species (RNS) leads to 
inflammatory diseases (Cutando et al. 2007). In this line, 

defense mechanisms produce ROS and RNS to reduce 
pathogenic microorganisms. So, the imbalance between 
oxidants and antioxidants has been recognized as a risk 
factor for chronic oral inflammatory diseases (Bagan et al. 
2014; Yang et al. 2019; Zhang et al. 2023). Melatonin 
acts as an anti-inflammatory agent in bone remodeling, 
osseointegration of dental implants, periodontal disease, 
and oral cancer (Tachibana et al. 2014). By passive diffu-
sion, melatonin enters the oral cavity in the saliva, which 
contains high concentrations of melatonin (Çevik-Aras and 
Ekström 2010). Salivary melatonin represents the percent-
age of circulating melatonin that is not albumin-bound 
(Arias-Santiago et al. 2012). Melatonin and its metabolites 
are important antioxidants that reduce oxidative stress in 
fibroblast cells (Phiphatwatcharaded et al. 2017). Also, 
melatonin has a capacity for chelating metals like iron 
(III), copper, and zinc, which causes a decrease in their 
cytoplasmic availability (Gulcin et al. 2003). In addition, 
melatonin is implicated in the section of chloride and 
bicarbonate ions, sodium, and potassium in salivary ducts 
(Arias-Santiago et al. 2012). It is also known that mela-
tonin neutralizes the increased production of inflamma-
tory mediators like tumor necrosis factor-α (TNF-α) and 
several interleukins and decreases neutrophil infiltration 
(Fig. 1) (Cobo-Vázquez et al. 2014; Khomari et al. 2021).

Fig. 1   Tissue deterioration is caused by inflammatory mediators such 
as MMPs and ROS, which influence collagen breakdown. Melatonin 
treatment of human gingival fibroblasts increases the levels of colla-
gen III a1 mRNA while decreasing the expression of MMP1. In addi-
tion, melatonin inhibits osteoclast activity and increases osteoblast 
activity, protecting periodontal tissues from inflammatory media-

tors. Through contact with its receptor RANK, which is expressed 
on the surface of osteoclasts, RANKL, a protein produced by oste-
oblasts, plays a crucial role in the creation and function of osteo-
clasts. RANKL concentrations in saliva are decreased by melatonin. 
RANKL: receptor activator of the NF-kB ligand. MMPs: matrix met-
alloproteinase. LPS: lipopolysaccharide
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Role of melatonin in the inflammatory condition 
of the oral cavity

A chronic inflammatory immune-mediated disease of the 
oral mucosa, oral lichen planus (OLP), is linked to a higher 
risk of mouth cancer and is considered to be possibly malig-
nant (Agha-Hosseini et al. 2012). The clinical characteristics 
of OLP consist of Wickham striae, some redness, and white 
lines on the oral mucosa (Lavanya et al. 2011). In the early 
phase of OLP, the production of inflammatory mediators 
occurs through an inflammatory response in oral mucosal 
tissue. The signaling molecules, such as TNF-α and NF-kB, 
repress the synthesis of pineal melatonin, leading to the 
migration of immune cells from the bloodstream into the 
connective tissue of oral mucosa (Nabi-Afjadi et al. 2023a; 
Sharbatdar et al. 2023; Zhou et al. 2009). In the chronic 
phase of OLP, oral immune response dysregulation improves 
the accumulation of free radicals and oxidative stress mol-
ecules, which lead to oral mucosal damage. Furthermore, 
oral epithelial cell permeability is influenced by changes 
in the biosynthesis of melatonin and its receptors through 
chronic inflammation in the oral mucosa (Chaiyarit et al. 
2017; Thongprasom et al. 2006). Melatonin and melatonin 
1 receptor (MT1) are increased in the oral mucosa of OLP 
patients in contrast to the control (Chaiyarit et al. 2017). 
After radiotherapy, oxidative stress markers, such as malon-
dialdehyde (MDA), total oxidant status (TOS), and oxidative 
stress index (OSI), were reduced by melatonin, and catalase 
and glutathione levels were enhanced. So, in other words, 
melatonin decreases the salivary gland damage generated by 
irradiation (Cakmak Karaer et al. 2016).

Moreover, melatonin inhibits cancer cell growth by mod-
ulating DNA methylation and histone acetylation pathways 
(Niles et al. 2013; Sharma et al. 2008; Zhang et al. 2023). 
According to Yang et al. findings, histone lysine-specific 
demethylase (LSD1) was overexpressed in oral cancer tis-
sues of clinical patients and patient-derived tumor xeno-
graft (PDTX). Melatonin downregulated LSD1 expression, 
decreased its mRNA levels, and provoked H3K4 and H3K9 
acetylation. Melatonin also caused cell cycle arrest in the 
G0/G1 phase. These data suggest that melatonin is a possi-
ble therapeutic option for LSD1-overexpressing oral cancer 
(Yang et al. 2017a).

On the other hand, it is well known that the breakdown 
of the basement membrane is a significant step for metas-
tasis and invasion, which needs the activation of proteo-
lytic enzymes, such as matrix metalloproteinases (MMPs). 
MMP-9 is an important target of melatonin for the regula-
tion of cancer metastasis (Shah et al. 2009). In a study per-
formed by Yeh et al., 12-O-tetradecanoyl phorbol-13-acetate 
(TPA) was used to induce the MMP-9 expression. This study 
revealed that melatonin, through ERK1/2 phosphorylation, 
repressed the TPA-induced MMP-9 expression of oral 

cancer cells. They also demonstrated that melatonin inhib-
ited the expression of a CREB-binding protein (CREBBP) 
and E1A-binding protein p300 (EP300) transcription factors 
and decreased histone acetylation on the MMP-9 gene (Yeh 
et al. 2016). More recently, a study performed by Liu et al. 
also established that melatonin upregulated E-cadherin lev-
els and downregulated the expression of p-Akt, Snail, and 
Vimentin. Also, their result indicated that melatonin sup-
presses oral cancer metastasis by decreasing ROS-dependent 
Akt activation (Liu et al. 2018a, b).

Protection action of melatonin against gingivitis 
and periodontitis

The periodontium is made of soft (periodontal ligament and 
gingiva) and hard (cementum and bone) tissue, which con-
trol teeth function (Bartold and Narayanan 2006). Microor-
ganisms in the periodontium can cause pathological altera-
tions that result in the production of harmful chemicals such 
as lipopolysaccharide (LPS), which can cause an inflamma-
tory reaction (dos Santos et al. 2018).

Inflammatory mediators including ROS, IL6, and MMPs 
are released when periodontal disease occurs, affect-
ing collagen breakdown and ultimately resulting in tissue 
loss. Meanwhile, fibrosis and scarring are the outcome of 
inadequate tissue repair (Bartold and Narayanan 2006; Lin 
et al. 2015). In periodontitis patients, melatonin levels are 
low in saliva and gingival crevicular fluid compared to the 
healthy control. So, salivary melatonin level is possibly a 
sign of periodontal disease severity (Cutando et al. 2006). 
In 2019, Bertl et al. demonstrated that salivary melatonin 
levels were lower in periodontitis patients before therapy 
compared to healthy controls and notably associated with 
clinical periodontal parameters. After periodontal therapy, 
salivary melatonin levels were significantly enhanced and 
negatively related to a decrease in local inflammation (Bertl 
et al. 2013). Accumulating evidence indicates that the treat-
ment of human gingival fibroblast (HGF) with melatonin 
also enhances collagen III a1 (COL3A1), Decorin (DCN), 
tissue inhibitor of metalloproteinase1 (TIMP1), and IL10 
mRNA levels while downregulating MMP1 expression. In 
addition, melatonin treatment reduces the MMP1/TIMP1 
protein ratio, leading to a decrease in MMP-related ECM 
destruction. So, regulation of the MMPs through melatonin 
is a potential therapeutic strategy to reduce the progression 
of periodontal disease (Gómez-Florit et al. 2013).

On the other hand, melatonin attenuates the expression of 
inflammatory mediators by suppressing NF-κB activation. 
According to Hosokawa et al., melatonin reduced IL-1β-
induced CXC chemokine ligand (CXCL) 10 and MMP-1 pro-
duction and improved TIMP-1 production in human periodon-
tal ligament cells (HPDLC). In addition, they reported that p38 
MAPK, JNK phosphorylation, and IkB-α degradation were 
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repressed by melatonin in IL-1β-stimulated HPDLC. These 
results indicate that by controlling MMP and TIMP produc-
tion in periodontal lesions, melatonin inhibits the initiation 
and progression of periodontal disease (Hosokawa et al. 2016).

Melatonin promotes the gingival index and pocket depth 
while diminishing salivary concentrations of receptor activa-
tors of the NF-κB ligand (RANKL) and salivary concentra-
tions of osteoprotegerin (OPG). Cutando et al. suggest that 
melatonin influences osteoclastogenesis, enhances the prop-
erty of alveolar bone, and inhibits the progression of peri-
odontal disease (Cutando et al. 2014). Melatonin also exerts 
its influence through Mel1aR on tooth development. Tooth 
development is under the regulation of systemic hormones 
in the same way as skeletal growth. Via physiological regu-
lation of odontogenic cells, melatonin mediates the growth 
of the tooth and surrounding jaw bone. At the late stage 
of tooth development, Mel1aR is expressed in some kind 
of odontogenic cells in the tooth germs. Melatonin shows 
positive influences on the proliferation and odontoblastic dif-
ferentiation of human dental papilla cells (Kumasaka et al. 
2010; Tachibana et al. 2014).

Melatonin and stomach secretion

The protective role of melatonin on gastric mucosa is due 
to the inhibition of gastric acid and pepsin secretion. Gas-
tric acid and pepsin are two important invasive factors in 
the pathogenesis of gastric ulcers and are associated with 
stress-induced gastric mucosal injuries (Kato et al. 1998). It 
has been observed that in animal models of chronic gastric 
fistula, melatonin reduced gastric acid and also increased 
plasma gastrin levels (Konturek et al. 1997). In addition, 
intracisternal injection of melatonin in rat’s pylorus-ligated 
consciousness reduced secretion of gastric acid and pepsin in 
a dose-dependent manner. It is suggested that this inhibitory 
effect of melatonin is related to the central nervous system 
(CNS) (Kato et al. 1998). Luminal melatonin is a power-
ful stimulant for HCO−

3 secretion by the duodenal mucosa. 
It is also believed that melatonin controls the secretion of 
alkaline in the presence of acid in the lumen (Sjöblom and 
Flemström 2003). Melatonin has been shown to protect 
the gastrointestinal mucosa by stimulating the production 
of mucosal HCO-3 by causing the release of intracellular 
Ca+2 in the enterochromaffin cells through the MT2 recep-
tor (Ataee et al. 2017; Bubenik 2002).

Melatonin and mucosal protection and ulcer 
healing

Stomach ulcers are mainly present at the antral site, fol-
lowed by gastric mucosal injuries (Bandyopadhyay et al. 
2001). By speeding up the oxidation process, aspirin, a 

nonsteroidal anti-inflammatory medicine, stimulates the 
generation of hydrogen peroxide (H2O2), which in turn 
creates deadly hydrochloric acid (via Cl- and H2O2). This 
finally causes gastrointestinal damage such as ulcers and 
upper gastrointestinal hemorrhage as well as mucosal per-
oxidation (Moharram et al. 2017). The clinical symptoms 
of gastric ulcers include common epigastric pain and, in 
severe cases, observation of blood in the vomitus. These 
ulcers are also referred to as peptic ulcers, as the produc-
tion of pepsin and hydrochloric acid typically exacerbates 
them (Bandyopadhyay et al. 2001). These lesions involve 5 
to 10% of the world’s people throughout their lives. Gastric 
acid, cytokines, interleukin-1, and TNF-α have a key role in 
inducing mucosal damage (Moharram et al. 2017). Gastro-
intestinal ulcers are created when the balance between toxic 
and defensive factors is disrupted. The endogenous destruc-
tive factors include hydrochloric acid, pepsin, refluxed 
bile, leukotrienes, and ROS such as the superoxide anion 
(O2

−●), hydrogen peroxide (H2O2), and the hydroxyl radical 
(●OH) and external destructive factors including alcohol, 
steroidal and nonsteroidal anti-inflammatory drugs, stress, 
and Helicobacter pylori. The gastric mucosa, through the 
mucus-bicarbonate barrier, prostaglandin, mucosal blood 
flow, migration of cells and antioxidants, and anti-oxidative 
enzymes, can play a protective and defensive role against 
these invasive factors. It has been proven that ROS plays a 
key role in the pathogenesis of gastric ulcers in studies that 
focused on ischemia-reoxygenation-induced gastric mucosal 
injury (Bandyopadhyay et al. 2001). ROS is one of the most 
important factors in the pathogenesis of gastric mucosal 
lesions that increases lipid oxidation, which subsequently 
damages the cell membranes and intercellular molecules. In 
this context, the inhibitory role of melatonin in preventing 
and healing stomach ulcers is discussed (Bandyopadhyay 
et al. 2001). It has been proven that melatonin amount in the 
digestive system is 400 times greater than the pineal gland 
(Konturek et al. 2010; Konturek et al. 2006; Sjöblom and 
Flemström 2003; Taslidere et al. 2018). Also, a high level of 
melatonin has been found in the bile, and melatonin-binding 
sites have been observed in the stomach, jejunum, ileum, 
and colon (Bandyopadhyay et al. 2001). The synthesis of 
melatonin in the GIT is not associated with the production 
of the pineal gland, but in GIT, the synthesis of melatonin 
occurs during the day and alternately after the meal. The 
regulation of melatonin in the peripheral blood is regulated 
by melatonin from GIT origin and is also influenced by a 
high concentration of tryptophan (precursor of melatonin) 
(de Talamoni et al. 2017). Because they contain the essential 
melatonin synthesis enzyme, hydroxy-indole-O-methyltrans-
ferase (HIOMT), the enterochromaffin-like cells of the GIT 
are the primary source of melatonin in the organ (Brzozo-
wska et al. 2002; de Talamoni et al. 2017). As mentioned 
above, melatonin has received special attention in the past 
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10 years for its ability to scavenge free radicals and act as an 
antioxidant. Furthermore, it has been demonstrated in gas-
tric ulcer models that melatonin shields the stomach mucosa 
from oxidative damage brought on by reactive oxygen spe-
cies (Bandyopadhyay et al. 2001; Brzozowska et al. 2002; 
Konturek et al. 2006). It has been reported that melatonin in 
ulceration healing inhibited the secretion of HCl and pepsin 
and also eliminated intracellular ROS. In addition, mela-
tonin has been shown to reduce the gastric ulcer rate and 
the level of tissue MDA and increase superoxide dismutase 
(SOD) activity and glutathione (GSH) levels in inducible 
conditions for stomach ulceration such as ischemia, etha-
nol, and acetylsalicylic acid (ASA) (Noorbakhsh Varnosfad-
erani et al. 2023; Taslidere et al. 2018). Abdelraheim et al. 
suggested that the healing of gastric ulcers by melatonin is 
associated with ghrelin biosynthesis and GSH and reducing 
MDA content (de Talamoni et al. 2017). Additionally, mela-
tonin prevents ethanol, ischemia, stress, and aspirin-induced 
stomach ulcers by preventing inflammation caused by the 
accumulation of polymorphic neutrophils, preventing the 
loss of GSH levels, and increasing stomach prostaglandin 
levels. Most effects of melatonin in the GIT are related to 
the membrane and nuclear receptors, although some of its 
other functions are independent of these receptors. There are 
three membrane receptors in which the MT1 and MT2 have 
a high homology in amino acid content and are expressed 
throughout the GIT, especially in the enterochromaffin cells 
(MT2 is predominantly expressed). These two receptors are 
G-protein-coupled, and when they are activated, a range of 
intracellular messengers such as cAMP, cGMP, or Ca+2 are 
modulated (de Talamoni et al. 2017; Konturek et al. 2010). 
Some evidence has also shown that the mechanism of mela-
tonin in healing gastrointestinal damage is due to the activa-
tion of cyclooxygenase (COX), prostaglandin (PG) system, 
and nitric oxide synthase (NOS) systems. One of the symp-
toms of gastric ulcer healing by melatonin is an increase 
in hyperemia at the margin of the ulcers, either due to the 
presence of melatonin or because of the presence of potent 
vasodilators such as NO or PGE2, with the origin of vascu-
lar endothelium, gastric epithelium, and capsaicin-sensitive 
nerve endings. In this way, suppressing COX by a non-
selective inhibitor, such as indomethacin, reduces the pro-
tective effect of melatonin and L-tryptophan against mucosal 
ulceration. It has been demonstrated that nitric oxide (NO) 
plays a crucial role in the way that melatonin functions to 
heal gastric ulcers. When L-NNA is added as an NOS inhibi-
tor, the release of NO from the luminal is inhibited, which 
lowers the mucosal hyperemia that is caused by melatonin 
or L-tryptophan at the ulcer margin (Konturek et al. 2006). It 
has been indicated that melatonin, either by gut mobilization 
(exogenous form) or in response to the precursor, trypto-
phan (an endogenous form), increases the rate of healing of 
chronic stomach ulcers, which is associated with an increase 

in gastric blood flow at the margin of the ulcers, increased 
plasma gastrin levels and luminal NO release (Brzozowska 
et al. 2002).

Melatonin and Helicobacter pylori

Helicobacter pylori (H. pylori) is a gram-negative spiro-
bacterium that resides in epithelial gastric cells and gastric 
mucosal. H. pylori infection is associated with chronic gas-
tritis, peptic ulcers, and lymphomas (Akbari et al. 2023). It 
has been suggested that the use of melatonin is an appropri-
ate candidate for the eradication of H. pylori, which is still 
needed for further studies. TLRs are regulators of regula-
tory T cells (Treg), which are part of the innate immune 
system. It has been suggested that by blocking the signaling 
pathway of TLR4, the expression of the MyD88 decreases, 
which also leads to a decrease in the activity of the NF-κB 
(Gong et al. 2016). Because H. pylori increases the risk of 
DNA damage of infected gastric epithelial cells, melatonin 
also reduces the extent of these injuries with its antioxidant 
properties (Asghari et al. 2017; Xin et al. 2015). Other con-
trolling molecules involved in the pathogenesis of H. pylori 
infections include Foxp3 and TGF-β1. Studies have shown 
that H. pylori-infected mice have increased the expression 
of the Foxp3 of Treg cells and increased the IL-10 produc-
tion of B-cells in the gastrointestinal mucosa. In a study, 
the presence of melatonin reduced the expression of the 
Foxp3 and several cytokines through the TLR2 or TLR4 
signaling pathway. MyD88 is an adaptor molecule and a 
downstream factor of the TLR2 and TLR4, and its expres-
sion like TLR2 decreases during the two-week treatment 
with melatonin. In addition, H. pylori infections release the 
specific pro-inflammatory cytokines of the Th1, Th2, and 
Th17 cells such as IFN-γ, TNF-α, IL-2, IL-6, IL-10, IL-17, 
and TGFβ1, through TLRs2 and TLR4 signaling pathways. 
It has been observed that during the treatment of H. pylori-
infected models with melatonin, the serum level of these 
pro-inflammatory cytokines has significantly decreased (Luo 
et al. 2018b).

Melatonin and stomach cancer

Gastric cancer (GC) is the fourth most common cancer and 
one of the most embryonic malignant tumors with the sec-
ond-highest mortality rate among all malignancies world-
wide (Zhang et al. 2013; Sumei Zhang et al. 2012; Zhu et al. 
2018a). Among the risk factors for GC, H. pylori infection, 
nitrites and processed meat products can be mentioned (Zhu 
et al. 2018a). Common treatments for GC include surgery, 
radiotherapy, and chemotherapy. Since the treatment period 
is heavy and the result of the treatment and their survival are 
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poor, we need more effective, lasting, and safe treatment. 
Melatonin is a new therapeutic compound for this purpose 
that has high efficacy and low toxicity (Asghari et al. 2017; 
Zhang et al. 2012). In most cases, for the treatment of GC, 
melatonin is used as a complementary therapy along with 
chemotherapy. Also, immunotherapy with low doses of IL-2 
and melatonin has a good effect and tolerance on diges-
tive malignancies, especially GC. A study observed that 
tumor regurgitation in the subcutaneous injection of IL-2 
(in low doses) and melatonin was a biotherapy in patients 
with metastatic GC (Zhang et al. 2013). Melatonin has also 
been proven to exert an anticancer activity through its direct 
inhibitory effect on cell proliferation and metastasis, block-
age of growth factor secretion, suppression of tumor cell 
migration, invasion, and metastasis, inhibition of colony 
formation, activation of anti-oxidative stress, stimulation of 
anticancer immune system, and induction of apoptosis of 
cancer cells (Asghari et al. 2017; Liu et al. 2017; Lissoni 
et al. 1997; Xin et al. 2015; Zhang et al. 2013; Zhang et al. 
2012). The antioxidant properties of melatonin limit oxi-
dative DNA damage, thus reducing carcinogenesis. Also, 
melatonin induces apoptosis with its pro-oxidant activity in 
cancer cells, which depends on the condition of NF-κB acti-
vation (Asghari et al. 2017). According to studies conducted 
on GC cells, it has been shown that melatonin affects the 
MAPK signaling pathway (including p38, JNK, and ERK 
molecules that control various cellular activities such as 
metabolism, cell proliferation, migration, and apoptosis), 
which reduces cell viability, colony formation, and migra-
tion and increases apoptosis. Melatonin activates p38, JNK, 
and ERK by their phosphorylation and, on the other hand, 
by upregulation of the Bax and downregulation of the Bcl-2. 
This leads to the activation of caspase-3 in the cancer cells, 
which ultimately induces apoptosis (Asghari et al. 2017; Li 
et al. 2015; Xin et al. 2015). Furthermore, it has been shown 
that melatonin leads to reduced cancer cell proliferation by 
phosphorylation of p38 and JNK, followed by a decrease 
in the expression of NF-κB p65 (Asghari et al. 2017). Cas-
pase-3 is an apoptotic regulator, and it has been suspected 
that this is the final caspase for cell death. Activation of this 
caspase occurs through the proteolytic cleavage of inactivate 
procaspase-3 which is converted to active subunits. Mela-
tonin has been shown to increase the caspase-3 level and 
thereby lead to the induction of apoptosis in gastric can-
cer cells (Zhang et al. 2013). Other mechanisms of mela-
tonin are blocking growth factors signaling pathways that 
stop the cell cycle modulating intercellular interactions and 
destroying cytoskeletal structures, which causes the death 
of cancer cells. One of the risk factors for carcinogenesis is 
damage to DNA and mutations that activate oncogenes or 
inactivate tumor suppressor genes, which ultimately cause 
excessive cell proliferation and tumor formation. It has been 
observed that melatonin, by upregulation of p21, as a tumor 

suppressor gene, causes cell cycle arrest and inhibition 
of DNA synthesis in GC cells (Asghari et al. 2017). The 
inhibitory role of melatonin on cancer cell proliferation is 
applied in two ways: (i) by reducing the synthesis of DNA 
in cancer cells and (ii) by promoting cell differentiation by 
upregulation of the endocan gene and reducing the activ-
ity of alkaline phosphatase and lactate dehydrogenase (Xin 
et al. 2015).

Alkaline phosphatase and lactate dehydrogenase are 
enzymes involved in the differentiation of gastric cells, 
which increase their activity in gastric cancer. Melatonin 
exerts its anticancer activity by reducing these enzyme’s 
activities. In addition, the endocan gene, which is a sulfate 
proteoglycan, is overexpressed in stomach cancer, and mela-
tonin plays a key role in cancer repression by reducing the 
expression and transcription of this gene (Zhang et al. 2012). 
The suppression of linoleic acid, an important fatty acid that 
cancer cells receive through the cAMP signaling pathway, 
is one of melatonin’s other anticancer characteristics. As a 
result, there will be disruptions in energy generation and the 
development of cancer cells.

Cancer cell epithelial-mesenchymal transition (EMT) 
is a process that transforms cancer cells into cancer stem 
cells that have metastatic and invasive properties (Tangsiri 
et al. 2024). It has been observed that melatonin inhib-
its this process in the gastric adenocarcinoma cell line 
(Bakhtiyari et al. 2023). The weakening of EMT is accom-
panied by a downregulation of the C/EBPB gene, which 
decreases NF-κB signaling to β-catenin and suppresses 
E-cadherin, eventually inhibiting tumor growth and metas-
tasis (Asghari et al. 2017; Zhao et al. 2023a). Moreover, 
pro-angiogenic markers such as hypoxia, cytokine interleu-
kin-6, MMPs, vascular endothelial growth factor (VEGF), 
and interleukin-6 that overexpress in GC are associated 
with cancer cell invasion and progression. VEGF activates 
several MMPs, including MMP-9 and MMP-2, that cause 
extracellular matrix destruction, invasion, and angiogen-
esis. It has been observed that melatonin directly binds to 
the MMP-9 active site and suppresses this protein func-
tion (Asghari et al. 2017; Xin et al. 2015). Melatonin also 
increases the capacity of DNA repair and regeneration by 
some of the key genes and inhibits tumorigenesis (Fig. 2) 
(Xin et al. 2015). Much evidence has shown that malig-
nancies occur due to not only genetic changes but also 
epigenetic changes, such as microRNA (miRNA) changes 
that play a key role in tumorigenesis. miRNAs, by target-
ing downstream genes, cause negative regulation of gene 
expression through the effect of mRNA transcription and 
protein translation (Karami Fath et al. 2022). Changes in 
miRNA expression can suppress tumors and oncogenes at 
the onset and progression of cancer. Recently, the role of 
miRNAs has been proven in inhibiting melatonin-induced 
growth and apoptosis of cancer cells. Mothers against 
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decapentaplegic homolog 3 (Smad3) is a key regulator 
of the TGF-b signaling pathway that regulates cell prolif-
eration, differentiation, and apoptosis. In many cancers, 
especially GC, an abnormal expression of Smad3 has been 
observed. It has been proven that miR-424-5p could con-
trol the growth and proliferation of GC cells by targeting 
Smad3. It has been demonstrated that melatonin increases 
the expression of miR-16-5p in GC. Here, miR-16-5p tar-
gets Smad3 to reduce its expression, which in turn regu-
lates the TGF-b signaling pathway, which is crucial for 
controlling cell proliferation. This prevents the growth of 
cancer and triggers apoptosis (Zhu et al. 2018a).

On the other hand, the immune system status plays a criti-
cal role in the prognosis of cancer patients. Therefore, the 
inhibition and suppression of chemotherapy-related immu-
nosuppression (such as lymphocyte damage) by melatonin 
can affect the quality and quantity of patients’ lives (Lis-
soni 2002). Tumors escape the immune system by tolerat-
ing immunity or suppressing the immune system. In many 
cancers, especially GC, tumor cells suppress the antitumor 
T cells by activating the Treg. Melatonin, with its pleio-
tropic functions, can control and increase immune responses 
(Asghari et al. 2017). CD4+ CD25+ T cells are a subset of 
regulatory T cells that are abundant around the GC tumor 
and have a direct relationship with the development of this 
cancer. The function of these cells depends on the Foxp3 
protein. In-vitro and in-vivo experiments showed that mela-
tonin decreased the number of CD4+ CD25+ T cells as well 
as suppressed their regulatory protein expression (Foxp3), 

thereby reducing tumor volume and weight (Asghari et al. 
2017; Xin et al. 2015).

Melatonin and intestinal functions

Studies have up to now demonstrated some of the effects 
that melatonin appears to have on intestinal function. This 
research has yielded some fascinating findings, one of which 
is the synthesis of melatonin in enterochromaffin cells (EC) 
of intestinal tissue. Specifically, large quantities of mela-
tonin have been observed in colon and rectum tissue (Ber-
trand et al. 2014; Chojnacki et al. 2012; Poon et al. 1997). 
It appears that tryptophan stimulates the production of mel-
atonin in the enterochromaffin cells (S. J. Konturek et al. 
2007). It has been noted that the intestinal tissue’s mela-
tonin content is not just derived from endogenous produc-
tion; some foods also contain melatonin, which is absorbed 
by them. Additionally, certain common gut flora bacteria 
can also produce melatonin, meaning that melatonin from 
these sources is present in the intestinal lumen (Forsythe 
et al. 2010; Peuhkuri et al. 2012). Based on several studies, 
melatonin neutralizes the oxidative effects of GSH-depleting 
drugs such as menadione and prevents inhibition of calcium 
uptake by these drugs (Areco et al. 2016; Carpentieri et al. 
2014). Some studies have also shown that melatonin inhibits 
cholesterol absorption in rats (Hussain 2007). The relation-
ship between melatonin and cholecystokinin (CCK) and 
pancreatic amylase is also interesting. CCK is a hormone 
that contributes to the absorption of lipids through increas-
ing bile secretion. Melatonin appears to stimulate CCK 
release via pancreatic amylase, MT2 receptors, and mucosal 
bicarbonate. It also plays a major role in the slow move-
ment of peristalsis, which facilitates efficient meal absorp-
tion (Nawrot-Porabka et al. 2013; Slominski et al. 2012). 
Moreover, a study on hens showed that melatonin increases 
the expression and function of amino acid transporters in 
the small intestine (Liu et al. 2018a). A study on chickens 
also showed that melatonin enhances not only the intestinal 
structure but also the digestive function and absorption of 
the small intestine (Li et al. 2017). Melatonin is also thought 
to play a role in the secretion of chloride by colon cells in 
the large intestine (Chan et al. 1998).

Not only does melatonin influence the aforementioned 
conditions, but it also has an impact on intestinal perme-
ability and motility. Increased intestinal permeability can 
result in inflammation or leaky gut syndrome. The intesti-
nal mucous membrane, whose strength depends on the tight 
connections between the epithelial cells, blocks the fast pas-
sage of soluble materials and pathogens into the underlying 
layers. Melatonin strengthens the intestinal membrane, as 
some studies have shown that melatonin inhibits the effects 
of alcohol consumption on the increase of permeability in 

Fig. 2   Effect of melatonin on the capacity of DNA repair and regen-
eration. H. pylori increases the susceptibility of gastric cells to car-
cinogens and mutagens. (I) Carcinogens like heterocyclic amines in 
the diet can damage the DNA of normal gastric epithelial cells, which 
ultimately induces tumorigenicity. (II) In the presence of melatonin, 
key enzymes involved in DNA repair are induced and increase the 
capacity for DNA repair. In this way, melatonin prevents tumorigenic-
ity of the gastric cells
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the duodenum (Sommansson et al. 2013b; Sommansson 
et al. 2014; Swanson et al. 2015) and probably applies these 
protective effects through acetylcholine nicotine receptors 
(Sommansson et al. 2013a). It was also shown that seroto-
nin stimulates intestinal contractions through specific recep-
tors on the surface of cholinergic cells, while melatonin 
decreases the contractile effects of serotonin; this inhibition 
effect of melatonin was also shown in rats (Tan et al. 2013; 
Velarde et al. 2010).

Melatonin’s effects on intestinal bacteria 
and the bacteria’s effects on the amount 
of melatonin

The number of sex hormones, epigenetic modifications, 
immunological response, biliary function, bile acids, and 
other physiological processes are only a few of the activities 
that intestinal bacteria are known to influence, both in health 
and sickness (Nabi-Afjadi et al. 2023b; Rizzetto et al. 2018; 
Wu et al. 2017a; Zhang et al. 2023). Furthermore, intestinal 
bacteria appear to be associated with many human diseases 
such as lupus, multiple sclerosis, type 1 diabetes, cardiovas-
cular disease, and inflammatory bowel disease (IBD) (Ni 
et al. 2017; Pouriamehr et al. 2019; Rizzetto et al. 2018; 
Sharbatdar et al. 2023; Weis 2018; Wu et al. 2017a), and 
even changing the composition of intestinal bacteria using 
probiotics is suggested as a therapeutic approach for the 
treatment of many human diseases (Cho et al. 2018; Liu 
et al. 2023; Marietta et al. 2018; Tian et al. 2022; Zhao et al. 
2023b). It appears that melatonin affects intestinal bacte-
rial composition, as it was shown in a study that melatonin 
increases the beneficial bacteria called lactobacillus in the 
intestines of rats (Ren et al. 2018). Lactobacillus has many 
beneficial effects, for example, protecting intestinal health, 
beneficial weight loss, and positive effect on lipid profile 
(Crovesy et al. 2017; Slover and Danziger 2008; Wu et al. 
2017b).

According to a different study, melatonin enhanced lipid 
metabolism and dramatically decreased the buildup of fat 
in the intestines of rats fed a high-fat diet by blocking the 
growth of lactobacillus, lowering the ratio of firmicutes 
to Bacteroides, and having an effect on the expression of 
genes related to lipid metabolism (Yin et al. 2018a). Addi-
tionally, melatonin alleviated lipid dysmetabolism in ani-
mals fed a high-fat diet by changing the gut microbiome. 
Another study also showed that melatonin inhibits obesity 
in rats fed with a high-fat diet by decreasing the ratio of 
firmicutes/Bacteroides, as well as the increase of bacteria 
called akkermansia contributing to mucosal health (Xu 
et al. 2017). As stated, oral melatonin reduces the amount 
of LPS produced by E. coli. This, in turn, ameliorated the 
transcriptional inhibition of angiopoietin-like 4 (ANGPTL4) 
induced by NFIL3 through the ileum’s toll-like receptor 4 

(TLR4)/interleukin-22 (IL-22)/STAT3 signaling, improv-
ing ileal lipid intake and reducing the accumulation of fat 
in epididymal-WAT. In addition, melatonin may potentially 
control energy metabolism through its interaction with 
microbial metabolites, particularly short-chain fatty acids 
(SCFA) like butyric acid. Butyrate’s actions are partially 
mediated by activating the melatonergic system, indicating 
a potential interaction between melatonin and the gut flora. 
Melatonin’s actions seem to be partially mediated by α-7 
nicotinic receptors, and the opioid system may be used by 
butyrate and melatonin to control obesity (Guan et al. 2021). 
By altering the abundances of Bacteroides and Alistipes, 
melatonin can help prevent lipid metabolic diseases through 
the microbiota-acetic acid axis pathway. Meanwhile, the gut 
microbiota will affect muscle composition and metabolism, 
and the concept of the gut–muscle axis has been formu-
lated (Yin et al. 2018b). In another study on mucosal coli-
tis, melatonin was associated with an increase in the ratio 
of firmicutes/ Bacteroides (Zhu et al. 2018b). These results 
imply that the makeup of gut bacteria is affected differently 
by melatonin, depending on the situation. This provides an 
intriguing regulation mechanism that will likely be clarified 
by further research.

However, the amount of melatonin can also be impacted 
by intestinal bacteria. The organelles called mitochondria 
are exclusive to eukaryotic cells. These organelles have an 
α-proteobacterial ancestor as their parent organism. Accord-
ing to the idea of endosymbiosis, α-proteobacteria invaded the 
progenitors of eukaryotes 1.5–2 billion years ago. These bac-
teria are capable of aerobic respiration and produce far more 
ATP for the host’s consumption than could be produced by 
glycolysis thanks to an electron transport chain that increases 
a proton potential (Tan and Hardeland 2020). Tan. D. et al. 
proposed the theory that gut bacteria are capable of produc-
ing melatonin for the first time (Tan et al. 2023). Melatonin, 
which is produced by yeast, has been found in the wine in 
this line (Morcillo-Parra et al. 2019). Furthermore, alkylamine 
N-acetyltransferase (AANAT) has been found in archaea and 
cloned from them (Lee et al. 2022). A large number of spe-
cies from these basic groups make up the gut microbiota. 
Consequently, there is no reason to deny that the host’s gut 
bacteria serve as an additional source of melatonin. Melatonin 
produced by microbiota primarily serves to shield its hosts 
from environmental assaults, especially free radicals (Luo 
et al. 2018a). For instance, under aluminum stress, recombi-
nant E. coli with melatonin synthesis enzymes produce eight 
times as much melatonin as the wild type, and as a result, 
their survival rate increases 100 times above that of the WT 
(Luo et al. 2018a). Furthermore, melatonin produced by the 
microbiota may help strengthen the host’s defenses. On the 
other hand, because of the incredibly high levels of bile mela-
tonin in humans and other animals, melatonin from microbiota 
penetrates the host’s system. Different species’ bile contains 
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melatonin in quantities ranging from 2000 to 11,000 pg/mL, 
which is 2–3 orders of magnitude more than that of daytime 
serum. It is probable that the bulk of the melatonin in the bile 
is derived from microbiota, which enters the enterohepatic 
circulation and is then expelled into the bile (Reiter et al. 
2017). Ouyang et al. also noted that melatonin was detected 
in cow rumen fluid, where it had a diurnal pattern in the in vivo 
investigation. The melatonin circadian rhythm was maintained 
when the rumen fluid was grown in vitro (Ouyang et al. 2021). 
The findings imply that, although being rhythmic, the mela-
tonin was produced by the rumen bacteria as opposed to the 
host cell.

Melatonin and irritable bowel syndrome

The intestinal condition known as irritable bowel syndrome 
(IBS) is typified by symptoms including diarrhea, constipa-
tion, bloating, and/or stomach discomfort. Although the pre-
cise origin of IBS is still unknown, several theories include 
the existence of subclinical inflammation and, in particu-
lar, the disturbance of the brain-gut axis (Luo et al. 2022; 
Soares 2014; Zhang et al. 2023). There is some evidence of 
a positive effect of melatonin in relieving IBS symptoms. A 
study has shown that patients with sleep disturbance show 
more severe signs of some of the symptoms of IBS (Chen 
et al. 2011). Another study showed that prescribing 3 mg 
melatonin at bedtime did not have an effect on the improve-
ment of sleep disorders in patients with IBS, but signifi-
cantly reduced abdominal pain in these patients (Song et al. 
2005). Another study on post-menopausal women with IBS 
showed that prescribing 3 mg of fasting melatonin and 5 mg 
of melatonin at bedtime after a six-month period reduced 
the severity of IBS symptoms in 70% of patients (Chojnacki 
et al. 2013). More interestingly, it appears that melatonin 
agonists also significantly reduce the severity of abdominal 
pain (Chen et al. 2014). Melatonin is probably also involved 
in the positive effects of probiotics in reducing the severity 
of IBS symptoms, as shown by the fact that VL # 3 probiotic 
use for six weeks reduces the severity of IBS symptoms and 
increases the level of melatonin in the morning (Didari et al. 
2015; Wong et al. 2015). More research is needed to fully 
understand how melatonin lessens the intensity of symptoms 
in IBS patients, but since serotonin is positively correlated 
with the intensity of abdominal pain in IBS patients, it is 
likely that many of these effects are caused by melatonin’s 
modification of serotonin’s effects (Cremon et al. 2011).

Melatonin and inflammatory bowel disease

One organic intestinal ailment is called inflammatory bowel 
disease (IBD). The symptoms of this inflammatory condi-
tion include diarrhea, rectal discomfort, and stomach pain. 

In vitro investigations show that the levels of inflammatory 
markers have increased (Moein et al. 2017; Moein et al. 
2018). Several factors are involved in the pathogenesis of 
this disease, including genetic predisposition, intestinal bac-
teria, and oxidative stress (Abraham and Cho 2009; Molnar 
and Annaházi 2014; Tuzun et al. 2002). In this disease, the 
mucosal barrier disorder results in the intrusion of intestinal 
bacteria into the intestinal lamina propria, resulting in sub-
sequent immune responses leading to chronic inflammation 
(Abraham and Cho 2009; Moein et al. 2017; Moein et al. 
2018; Molnar and Annaházi 2014). The relationship between 
melatonin and IBD has been the subject of many studies, and 
interesting findings have been obtained from these studies. 
In a study conducted on rats with acetic acid-induced colitis, 
it was shown that exposure to dark environments for two 
weeks reduced the severity of intestinal injuries (Cevik et al. 
2005). In another study on colitis rats’ models, it was shown 
that melatonin decreased the severity of intestinal inflamma-
tion. It was also shown that the serum level of melatonin in 
rats with colitis is higher than the healthy rats. Researchers 
have suggested that this increase may be due to increased 
intestinal production of melatonin in response to oxidative 
stress in colitis rat models (Pentney and Bubenik 1995). A 
recent study on human specimens has also shown that the 
level of melatonin-synthesizing enzyme in the colon tissue 
of IBD patients is significantly high, suggesting an increase 
in intestinal production of melatonin following the inflam-
matory process (Chojnacki et al. 2018).

However, another study on IBD patients found that serum 
levels of melatonin were lower in these patients compared 
to healthy subjects. There was also no correlation between 
serum levels of melatonin and inflammatory markers, but 
there was a direct correlation between serum folate levels 
and melatonin, which is interesting. It was also shown that 
serum homocysteine level in IBD patients was increased 
compared to healthy subjects, and there was a reverse corre-
lation between serum levels of melatonin and homocysteine, 
which was not statistically significant (Chen et al. 2012), 
however, considering that homocysteine is a known risk 
factor for cardiovascular disease, and in addition to IBD, it 
has been reported to increase in some other human diseases 
(Ebrahimpour et al. 2018; Goldstein et al. 2004; Montale-
scot et al. 1997). Further investigation on this correlation 
with more studies and identifying the effects of Circadian 
rhythms on the level of homocysteine can be very inter-
esting. Studies on the effects of melatonin on IBD are not 
limited to the mentioned cases above, as some studies have 
shown the antioxidant and anti-inflammatory properties of 
melatonin and have shown positive effects on these prop-
erties. Studies conducted on rats with colitis showed that 
melatonin reduced MDA, nitric oxide, IL6, and TNFα and 
increased superoxide dismutase and glutathione (Bai et al. 
2022; Mei et al. 2005; Tahan et al. 2011). Studies on human 
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specimens also suggest an increase in oxidative markers, 
such as MDA, in the serum of IBD patients, suggesting oxi-
dative stress in these patients (Vaghari-Tabari et al. 2018; 
Vaghari Tabari et al. 2017); moreover, the role of cytokines 
such as IL6 and TNFα in the pathogenesis of IBD is central 
(Abraham and Cho 2009). Therefore, it is not surprising that 
melatonin, with its antioxidant and anti-inflammatory prop-
erties, reduces the severity of the disease in IBD patients 
and is suggested as an effective therapeutic approach (Cho-
jnacki et al. 2011; Li et al. 2008; Liu et al. 2017). It appears 
that short-term prescribing of melatonin has produced this 
beneficial effect, and its long-term prescribing not only does 
not have a positive effect on reducing the severity of the dis-
ease but also worsens the severity of inflammation in mouse 
colitis models. In addition, melatonin agonists appear to be 
unable to mimic the anti-inflammatory effects of melatonin 
(Marquez et al. 2006; Zielinska et al. 2016).

There appears to be a relationship between melatonin 
and serotonin in IBD, as shown in recent studies on colitis 
models and intestinal mucosal of patients with IBD (Wu 
et al. 2023). It seems to reduce the availability of melatonin, 
decrease the activity of tryptophan hydroxylase 1, increase 
the availability of serotonin in the intestines of mice, and 
increase the serotonergic cells in the ileum of IBD patients 
(Giuffrida et al. 2018; MacEachern et al. 2018). Further-
more, serotonin appears to increase the severity of inflam-
mation in mucosal colitis by increasing the expression of 
MMP-3 and MMP-9 (Chen et al. 2016). In addition, in a 
study conducted on colon cells, TGF-β, a cytokine with 
protective effects on the mucus of the intestine, was shown 
to increase the expression of serotonin transporter (SERT) 
(Nazir et al. 2015). According to these findings, it is prob-
able that the beneficial effects of melatonin on reducing the 
severity of inflammation in IBD are due to its role in regulat-
ing serotonin function, a possibility that will undoubtedly be 
further explored by future studies (Table 1).

Melatonin and colorectal carcinoma

Colorectal cancer is the third most common cancer in the 
USA and has a high mortality rate (Siegel et al. 2017). Cir-
cadian rhythm disorder appears to contribute to the patho-
genesis of this cancer, and some studies have reported the 
circadian rhythm disorder as a risk factor for colorectal can-
cer (Mazzoccoli et al. 2014; Wood et al. 2010). In a study, it 
was also shown that the effects of physical exercise against 
colorectal cancer are dependent on the proper activity of the 
pineal gland, and pineal gland disorder enhances the extent 
of DNA damage in the colon epithelial cells of rats (Fra-
jacomo et al. 2015). MT1 receptor expression in colorectal 
cancer cells is also believed to be reduced (Nemeth et al. 
2011), all of which suggest the possibility of the anticancer 

role of melatonin. The beneficial effects of melatonin on 
colorectal cancer treatment have been reported in several 
studies. The role of melatonin in inhibiting the prolifera-
tion of colorectal cancer cells has been shown in one of 
these studies (Garcia-Navarro et al. 2007). Furthermore, 
melatonin appears to induce apoptosis in cancerous cells 
(Chuffa et al. 2016). One of the approaches to effectively 
treat cancer is using compounds that could stimulate apop-
tosis in cancer cells, and melatonin appears to be beneficial 
in this regard. Recent studies have shown that melatonin 
can induce apoptosis in colorectal cancer cells through the 
inhibition of prion proteins in cells that have anti-apoptotic 
activity and increase the susceptibility of these cells toward 
oxaliplatin (Lee et al. 2018a; Westergard et al. 2007; Yun 
et al. 2018). Some studies have also shown that melatonin, 
via increasing the expression of sodium-calcium exchanger1 
(NCX1), reduces calcium levels, induces ER stress, and sub-
sequently induces apoptosis in colorectal and ovarian cancer 
cells (Chovancova et al. 2017). Some studies also suggest 
the beneficial effects of melatonin in increasing the suscepti-
bility of colorectal cancer toward 5-fluorouracil and doxoru-
bicin (Fic et al. 2017; Lee et al. 2018b; Pariente et al. 2018). 
The effect of melatonin appears to increase the susceptibility 
of colorectal cancer cells toward 5-fluorouracil due to its 
role in inhibiting the NF-κB and PI3K/AKT signalingpath-
ways (Gao et al. 2017a, 2017b) as very important signaling 
pathways in cancer progression. In addition, melatonin sup-
presses angiogenesis in colorectal cancer cells by inhibit-
ing HIF1α (Park et al. 2010). According to the findings, 
melatonin and some of its metabolites, such as 2-hydroxy 
melatonin, which has even stronger antitumor effects than 
melatonin (Yang et al. 2017b), can be effectively utilized in 
colorectal cancer, and further studies will probably focus 
more on this issue.

The role of melatonin in liver

The liver is a necessary organ of the body that plays numer-
ous functions including nutrient storage, metabolic func-
tions, excretory functions, digestive functions, fresh mol-
ecules synthesis, and detoxification (Chojnacki et al. 2017; 
Nieminen et al. 2001; Zhang et al. 2017). Regarding the 
importance of the liver in the body, liver dysfunction can 
affect human health (Pan et al. 2006; Sheen et al. 2016). 
Importantly, several studies investigated the melatonin 
effects on a wide spectrum of liver injuries and diseases 
including alcoholic liver disease (ALD), non-alcoholic 
liver diseases, such as non-alcoholic fatty liver diseases 
(NAFLD), and non-alcoholic steatohepatitis (NASH), 
hepatic cholestasis, hepatitis, fibrosis, and cirrhosis (Zhang 
et al. 2017). MT1 and MT2 are melatonin receptors in the 
liver of mammals. The exact biological function of hepatic 
melatonin receptors is mostly unclear (Mathes 2010; Mathes 
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et al. 2008). It is suggested that hepatic melatonin recep-
tors may be implicated in the regulation of blood glucose 
(Mathes 2010; Muhlbauer et al. 2009). Melatonin could 
decrease liver injuries and diseases by suppressing oxida-
tive injury, improving mitochondrial physiology, inhibiting 
liver neutrophil infiltration, and the reduction of apoptosis 
rate (Mauriz et al. 2007; Zhang et al. 2017). Among them, 
the antioxidant and anti-inflammatory effects of melatonin 
have become more prominent (Zhang et  al. 2017). The 
detoxification of many molecules by the liver leads to the 
production of ROS which, in turn, results in oxidative dam-
age in hepatocytes. So, via its antioxidant properties, a high 
level of melatonin in the liver can preserve this important 
organ (Mortezaee and Khanlarkhani 2018). Key antioxi-
dant melatonin acts both directly on mitochondria, where 
it reduces the production of ROS, and indirectly on the 
body by promoting the activity of the endogenous antioxi-
dant system, which includes GSH, SOD, GPx, glutathione 
reductase (GSR), and suppressing pro-oxidant enzymes 
like NOS and lipoxygenases (Bonomini et al. 2018; Mathes 
2010; Murawska-Ciałowicz et al. 2010; Subramanian et al. 
2007). To highlight melatonin’s direct antioxidant effect, 
consider that oxidative phosphorylation—the process by 
which mitochondria produce energy—is the main job of the 
mitochondria. Superoxide, the most prevalent ROS, is cre-
ated when some electrons from the electron transport chain 
unavoidably escape during this process and combine with 
oxygen. Superoxide can then be transformed into other reac-
tive species. Most of the time, the mitochondrial antioxi-
dant system carefully regulates the amount of ROS present 
and keeps them within a range that allows them to function 
as signaling molecules. If not, high amounts of ROS cause 
oxidative stress, which damages tissue and cells (Reiter 
et al. 2017). It should be noted that melatonin is one of the 
important antioxidants that protect mitochondria from ROS/
oxidative stress. It has been discovered that the mitochon-
dria of many species, including plants and animals, contain 
melatonin-synthesizing enzymes. It has been revealed that 
the melatonin production mitochondrial location is restricted 
to the matrix. The mitochondrial matrix is the best location 
for melatonin synthesis in terms of substrate availability 
(Quintela et al. 2018; Tan and Hardeland 2020). A cofactor 
for melatonin synthesis called acetyl coenzyme A (acetyl-
CoA) is mostly produced in mitochondria at a concentra-
tion that closely matches the Km of AANAT, the enzyme 
that limits the pace at which melatonin synthesis occurs 
(Agrimi et al. 2004). S-adenosylmethionine (SAM), which 
supplies the methyl group for melatonin synthesis catalyzed 
by the enzyme acetylserotonin methyltransferase (ASMT), 
is another significant substrate for melatonin production. 
The concentration of SAM in mitochondria is consistently 
higher than in other cellular compartments (Chen et al. 2023; 
Tan et al. 2016). Significantly, mitochondria have higher 

melatonin levels than the cytoplasm. Melatonin’s action 
on mitochondria is primarily responsible for its protective 
properties (Berger et al. 2019). Mitochondrial dynamics is 
the term for the periodic fission and fusion cycles of mito-
chondria. Fusion often increases the size and functionality 
of mitochondria. Fission boosts the quantity of mitochondria 
and is essential for cell division. Fission, however, serves the 
purpose of separating the defective mitochondrial segments 
from the healthy ones in post-mitotic cells. The broken, 
defective segments go through a process called mitophagy, 
which is an autophagic process (Berger et al. 2019; Fang 
et al. 2020; Li et al. 2023; Luo et al. 2022). The majority of 
the time, melatonin increases the activity of mitochondrial 
complexes 1, 3, and 4, balances the potential of the mito-
chondrial membrane, shortens the time that the mitochon-
drial membrane permeability transition pore (mtPTP) opens, 
and sustains ATP production. All of these processes help to 
keep the mitochondria in their functional state (Fang et al. 
2020; Fernández Vázquez et al. 2018).

As an example of the indirect antioxidant action of mela-
tonin, it was shown that the 2.5 mg/kg, 5 mg/kg, and 10 mg/
kg doses of melatonin augmented SOD and GSH-Px activi-
ties, and the 10 mg/kg dose of melatonin decreased the lev-
els of malondialdehyde (MDA) in the liver of NAFLD rats 
stimulated by a high-fat diet (HFD). Consequently, mela-
tonin has protective activity in NAFLD, likely via its anti-
oxidant properties (Pan et al. 2006). Jang et al. also evalu-
ated melatonin effects on IL-6-induced different hepatic 
inflammatory responses in HepG2 cells. They showed that 
melatonin diminishes inflammatory responses such as a 
decrease of the multidrug resistance-associated protein 
(MRP2) expression stimulated by IL-6, reduction of albu-
min production, enhanced hepcidin expression, decreased 
glycogen storage, and reduced functions of mitochondria 
(Jang et al. 2018). Additionally, a recent study found that 
in patients with non-alcoholic fatty liver disease (NAFLD), 
melatonin lowers the levels of pro-inflammatory cytokines 
such as IL-1, IL-6, and TNF-α as well as some markers of fat 
metabolism, including gamma-glutamyltransferase (GGPT) 
activity, aspartate aminotransferase, alkaline phosphatase, 
triglyceride levels, and low-density lipoprotein (LDL)-cho-
lesterol (Celinski et al. 2014). Furthermore, in HFD-induced 
hyperlipidemia, melatonin increased the relative hepatic car-
nitine palmmitoyltransferase-1α expression and markedly 
decreased the activities of the hepatic lipogenic enzymes, 
such as SREBP1c, fatty acid synthase (FAS), stearoyl-CoA 
desaturase 1 (SCD1), acetyl-CoA carboxylase (ACC), and 
PPARγ (Ou et al. 2019).

So, melatonin plays an important role in the modulation 
of several metabolic processes including lipid metabolism, 
insulin sensitivity, glucose metabolism, and body weight (Mi 
et al. 2018; Sun et al. 2016). In this regard, Sun et al. exam-
ined the effects of melatonin on NAFLD induced by HFD in 
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C57BL/6 mice. In addition to a marked decrease in TNF-α, 
IL-1β, and IL-6 expression, treatment with melatonin leads 
to the reduction of body weights and liver weights, fast-
ing plasma glucose, alanine transaminase, and low-density 
cholesterol in the HFD mice by the suppression of mitogen-
activated protein kinase (MAPK)-JNK/P38 signaling path-
way (Sun et al. 2016). A growing body of evidence supports 
that the AMP-activated protein kinase (AMPK) has a critical 
function in lipid metabolism. The activation of AMPK leads 
to the inactivation of acetyl-CoA carboxylase (ACC), a liver 
enzyme that plays a serious role in fatty acid synthesis and 
oxidation (Serviddio et al. 2013; Wu et al. 2023). Besides, 
AMPK modulates the gene expression of transcription fac-
tors associated with lipid metabolism regulation such as per-
oxisome proliferator-activated receptors (PPARs) and sterol 
regulatory element-binding proteins (SREBPs) that are 
involved in lipolysis and lipogenesis, respectively (Mi et al. 
2018; Serviddio et al. 2013). Interestingly, it is reported that 
melatonin may inhibit oleic acid-induced lipid accumulation 
in HepG2 cells through the upregulation of AMPK (Mi et al. 
2018). Moreover, the administration of melatonin not only 
reduced serum total cholesterol and LDL-cholesterol but 
also increased high-density lipoprotein (HDL)-cholesterol 
in hypercholesterolemic rats stimulated by diet. Further-
more, lipid peroxidation (LPO) in the liver membrane is sup-
pressed by melatonin (Hoyos et al. 2000). The regulation of 
carbohydrate metabolism in hepatocytes is one of the most 
crucial melatonin effects. However, there are contradictory 
results regarding the effect of melatonin on carbohydrate 
metabolism (Akmali et al. 2010; Poon et al. 2001; Wang 
et al. 2022). Poon et al. have reported that melatonin may 
elevate the plasma glucose level via its direct action on the 
liver (Poon et al. 2001). Whereas, a recent study showed 
that melatonin alleviates plasma glucose and can enhance 
hepatic glucokinase, hexokinase, and glucose 6-P dehydro-
genase (G6PD) activities, the insulin receptors on hepato-
cyte membranes and as well as increasing the release of 
insulin by the pancreatic β-cells (Akmali et al. 2010). The 
mechanism by which melatonin regulates blood glucose is 
still unclear. It is suggested that melatonin may enhance 
hepatic glycogen synthesis through the modulation of the 
PKCzeta-Akt-GSK3beta pathway to reduce blood glucose. 
Therefore, melatonin may be a promising strategy for the 
treatment of diabetes (Shieh et al. 2009).

Bile, as a pivotal physiological fluid, plays important 
roles in cholesterol metabolism regulation, the stimulation 
of lipid absorption, and the elimination of toxic substances 
from the liver. It has been proven that there is a high amount 
of melatonin in the bile which can preserve biliary and small 
intestinal epithelium against oxidative damage (Glaser et al. 
2014; Tan et al. 1999). Interestingly, melatonin increases 
the production of bile in a dose-dependent manner (Vairetti 
et al. 2005). Several studies have revealed that melatonin 

can be an encouraging anticancer treatment (Mortezaee 
2018; Su et al. 2017). Apoptosis resistance is one of the 
most important factors associated with hepatocarcinogen-
esis. Melatonin restrains apoptosis resistance and induces 
apoptosis in HCC (Mortezaee 2018). Noticeably, melatonin 
can increase endoplasmic reticulum (ER) stress-induced 
apoptosis in HCC cells via the blocking of activating tran-
scription factor 6 (ATF-6) and cyclooxygenase-2 (COX-2) 
expression (Bu et al. 2017). In recent years, the regulatory 
relationship between melatonin and non-coding RNAs in 
cancer has been one of the hot research topics (Chen et al. 
2018a; Wang et al. 2018b; Wang et al. 2017). Melatonin 
therapy (at 1 mM and 2 mM doses) represses the prolifera-
tion, migration, and invasion and also promotes the let7i-3p 
microRNA expression in HepG2 cells. Besides, the let7i-3p, 
as a tumor suppressor, decreases the expression of RAF1 and 
the activation of its downstream oncogenic MAPK signal-
ing pathway. Hence, melatonin inhibits the HCC develop-
ment by miRNA Let7i-3p-mediated RAF1 downregulation 
(Wang et al. 2018b). Melatonin also leads to the upregu-
lation of long non-coding RNA-CPS1 intronic transcript 1 
(lncRNA-CPS1-IT1) expression via the induction of FOXA2 
expression in HCC cells. This increase in lncRNA-CPS1-
IT1 expression resulted in the reduction of HIF-1α activity, 
thereby suppressing the progress of epithelial-mesenchymal 
transition (EMT) and HCC metastasis (Chen et al. 2018b; 
Wang et al. 2017; Zalpoor et al. 2022a, 2022b). Melatonin 
can enhance the sensitivity of HCC cells to chemotherapy 
by the suppression of the DNA repair capacity of HCC 
cells. The mechanism by which melatonin represses DNA 
repair processes is through the overexpression of lncRNA 
RAD51-AS1, which binds to RAD51 mRNA to decrease the 
expression of RAD51 protein. The RAD51 protein binds to 
single-stranded DNA to provoke homologous recombination 
(HR) to complete DNA repair (Chen et al. 2018a) (Fig. 3). 
Taken together, melatonin with diverse pleiotropic actions 
can be used as a promising choice for the treatment of liver 
diseases (Table 2).

Melatonin and pancreas

Melatonin has several biochemical effects on the pancreas. 
At first glance, the effects of melatonin on β cells, insulin 
secretion, and glucose metabolism are of particular impor-
tance. To justify the multiple effects of melatonin, we must 
pay attention to the distribution of MT1 and MT2 (Pandi-
Perumal et al. 2008). Based on multiple research, MT1 and 
MT2, respectively, are more localized to α-cells and β-cells 
(Nagorny et al. 2011). The fundamental results of the mel-
atonin impact on these receptors are that the loss of both 
melatonin receptors leads to a significant increase in insu-
lin secretion. Melatonin inhibits the secretion of insulin in 
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pancreatic β-cells through G-protein-coupled MT1 receptor 
and cyclic guanosine monophosphate receptors (cGMP via 
M2 dependent receptor). This results in the downregulation 
of adenylate cyclase and guanylyl cyclase activity, which in 
turn lowers the levels of cAMP and cGMP as second mes-
sengers, which in turn subsequently reduces the levels of 
protein kinase A (PKA) and protein kinase G (PKG). Con-
versely, a number of investigations have demonstrated the 
role of inositol 1,4,5 triphosphate (IP3) in the melatonin 
signaling pathway and, therefore, the production of insulin 
from pancreatic β-cells (Espino et al. 2011; Peschke et al. 
2007). Based on recent research, the secretion and synthesis 
of melatonin are very different in type 1 and type 2 diabe-
tes. At an early stage of type 2 diabetes, increasing insulin 
secretion leads to decreased melatonin secretion in the pineal 
gland. In this situation, the protective effect of melatonin on 
β-cells is diminished and increased incidence of diabetes 
during life. In contrast, during type 1 diabetes, insulin secre-
tion considerably decreased, and after that, melatonin secre-
tion by the pineal gland significantly increased (Jaworek 
et al. 2012). The Langerhans pancreatic islets have low 
antioxidant capacity; hence, ROS and reactive nitrogen spe-
cies (RNS) may contribute to the dysfunction of β-cells and 
subsequently impaired insulin secretion during type 2 dia-
betes. Since melatonin has protective effects on these cells, 
ischemia/reperfusion (IR), which happens during tissue 
transplantation and other pathological conditions, is another 
way that the pancreas might generate excessive ROS. IR-
caused acute pancreatitis by causing inflammatory infiltrates 
to build up. Administration of melatonin in these subjects 
has powerful antioxidant effects by reduction of free radical-
derived such as MDA and restoration of antioxidant factors 

such as CAT and GPx (Espino et al. 2011; Muñoz-Casares 
et al. 2006). By reducing pro-inflammatory cytokines like 
IL-1β, IL-6, IL-8, and TNF-α and increasing anti-inflam-
matory cytokines like IL-10, melatonin also lessens the 
severity of pancreatitis by modulating the immune system. 
Additionally, melatonin can increase heat shock protein and 
reduce apoptosis and necrosis, both of which shield the cell 
compartment from damage (Jaworek et al. 2012; Nabi-Afjadi 
et al. 2021; Nabi-Afjadi et al. 2023a). Patients with obesity 
taking melatonin for 12 weeks also showed a pronounced 
decrease in the insulin resistance (IR) index. In the case of 
existing IR, melatonin treatment improves glucose metabo-
lism in the IR model by restoring the effect of insulin on the 
cardiovascular system (Song et al. 2018). A link between 
the polymorphisms of the melatonin receptor genes and 
IR has also been brought to light. Melatonin participates 
in improving IR via melatonin receptor 1 (MT1) or by pre-
venting mitochondrial dysfunction, promoting endoplasmic 
reticulum (ER) stress, and improving hepatokines associated 
with IR and T2DM, such as alpha-2-HS-glycoprotein (Guan 
et al. 2021; Su et al. 2023; Sun et al. 2018).

Melatonin and appetite

Circadian rhythm as an environmental synchronizer has an 
important role in the control of animal behavior; adjust-
ment of body energy balance is dependent on the correlation 
between the central nervous system, neuro-anatomical net-
work, and environmental conditions. This biological system 
integrates information from the body’s energy status and 
environmental conditions (Helwig et al. 2009).

Fig. 3   Melatonin can inhibit 
the progression of HCC by the 
regulation of non-coding RNA 
expression. Melatonin induces 
the expression of let7i-3p and 
thereby represses RAF1 and its 
downstream oncogenic pathway. 
Melatonin also reduces EMT 
progression and HCC metas-
tasis through the induction 
of FOXA2 and CPS1-IT1 
expression and inhibition of 
HIF-1α nuclear translocation. In 
addition, melatonin suppresses 
the DNA repair capacity of 
HCC cells through lncRNA 
RAD51-AS1-mediated the sup-
pression of RAD51 expression
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Based on multiple growing studies, melatonin has a role 
in the regulation of food intake and appetite (Fernández-
Durán et al. 2007). Several pieces of evidence report the 
importance of melatonin in the regulation of food intake by 
researchers on different animals like pigs, mice, hamsters, 
and goldfish. The results obtained from this study are con-
tradictory. In this regard, intracerebroventricularly injection 
of melatonin does not affect appetite and food intake. The 
intraperitoneal injection has significant effects and reduces 
this parameter (Pinillos et al. 2001). These inconsistent 
results depend on the spices studied and daily living habits; 

chronic melatonin administration positively induces mRNA 
levels of leptin. According to previous research, leptin can 
reduce appetite and food intake and stimulate the expression 
of POMC. After processing POMC to melanocortin pep-
tide, the MC4R signaling pathway is activated by melano-
cortin and consequently decreases appetite. Neuropeptide 
Y, another factor that increases food intake, is decreased 
by leptin; hence, melatonin through leptin has a significant 
effect on appetite (Piccinetti et al. 2010; Volkoff et al. 2003).

Ghrelin, also known as the “hunger hormone,” is pro-
duced by cholinergic cells in GIT and has an important 

Table 2   Hepatoprotective effects of melatonin

TG, triglyceride; ACC​, acetyl-CoA carboxylase; FAS, fatty acid synthase; SCD1, stearoyl-CoA desaturase-1; CPT1, carnitine palmitoyl-CoA 
transferase 1; MRP2, multidrug resistance-associated protein; HFD, high-fat diet; NASH, non-alcoholic steatohepatitis; LDL-cholesterol, low-
density lipoprotein-cholesterol; HDL-cholesterol, high-density lipoprotein-cholesterol; SOD, superoxide dismutase; GPx, glutathione peroxi-
dase; GSH, glutathione; MDA, malondialdehyde; HCD, high cholesterol diet; VLDL, very low-density lipoprotein; G6PD, glucose 6-P dehydro-
genase

Subjects Melatonin doses Hepatoprotective effects of melatonin Reference

HepG2 cells 0.1–0.3 mM Melatonin inhibited TG and cholesterol increased and 
down-regulated ACC, FAS, and SCD1, and also, it 
upregulated the CPT1 expression in HepG2 cells with 
lipid accumulation induced by oleic acid

Mi et al. (2018)

HepG2 cells 1 nM Melatonin decreased IL-6-induced inflammatory 
responses such as a decrease of the MRP2 expression, 
reduction of albumin production, enhanced hepcidin 
expression, decreased glycogen storage, and reduced 
functions of mitochondria

Jang et al. (2018)

C57BL/6 mice 10 mg/kg Treatment with melatonin led to the reduction of body 
weights and liver weights, fasting plasma glucose, 
alanine transaminase, and low-density cholesterol in 
HFD-induced NAFLD in C57BL/6 mice

Sun et al. (2016)

Rat 10 mg/L in the drinking water Melatonin administration decreases total cholesterol and 
LDL-cholesterol and stops the reduction of HDL-cho-
lesterol in diet-induced hypercholesterolemic rats. There 
were not any effects on the levels of cholesterol or TG. 
In addition, melatonin administration reduced serum 
uric, and bilirubin enhanced serum glucose levels

Hoyos et al. (2000)

Rat 0.5 mg/kg and 1 mg/kg body weight Melatonin treatment reduced the levels of cholesterol, 
phospholipids, TG, and free fatty acids in the liver tissue 
of rats. The treatment with melatonin improved the liver 
antioxidant enzymes activity such as SOD, catalase, and 
GPx, as well as augmented GSH levels

Subramanian et al. (2007)

Rat 2.5 mg/kg, 5 mg/kg, and 10 mg/kg daily Melatonin reduced the serum levels of alanine ami-
notransferase, aspartate aminotransferase, and levels of 
liver total cholesterol and TG in HFD-induced NAFLD 
rats. Moreover, melatonin enhanced the activities of 
SOD and GSH-Px and decreased the level of MDA in 
the liver

Pan et al. (2006)

Rat 10 mg/kg The cholesterol absorption was reduced by melatonin in 
rats fed on HCD. Melatonin decreased the plasma levels 
of total cholesterol, TG, VLDL, and LDL-cholesterol 
and the contents of cholesterol and TG in the liver and 
also increased the HDL-cholesterol level

Hussain (2007)

Rat 1.25 mg/mL Melatonin decreased plasma glucose, cholesterol, and 
triacylglycerol and augmented hepatic glucokinase, 
hexokinase, and G6PD activities in streptozocin-induced 
diabetic rats

Akmali et al. (2010)
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function in food intake and appetite. Ghrelin administration 
increases food intake and adiposity in mammalians. It seems 
that melatonin hurts ghrelin levels and chronic administra-
tion of melatonin reduces ghrelin levels and, subsequently, 
food intake; based on research, an orexigenic effect of ghre-
lin is applied by upregulation of neuropeptide Y. As a result, 
melatonin can repress the orexigenic effects of these two 
hormones (Miura et al. 2006; Mustonen et al. 2001). Moreo-
ver, melatonin has an orexigenic influence on CB1 and CB1-
like protein levels. It can also lower CBI levels, which in turn 
causes a decrease in food intake. These actions of the endo-
cannabinoid system also include the control of appetite and 
food intake (Piccinetti et al. 2010) (Fig. 4). Taken tougher, 
these results emphasized the central role of melatonin in 
controlling appetite and clearly show that melatonin is at the 
center of appetite signaling pathways; hence, this hypothesis 
can be posed that the administration of melatonin as the drug 
can control food intake and lead to weight loss obese people.

Conclusions

In response to food consumption, the enterochromaffin cells 
of the GIT produce and release more melatonin into the cir-
culation than the pineal gland. Melatonin has a variety of 
positive effects on the GIT, ranging from the mouth cavity to 
the clone. Melatonin is an antioxidant that protects the oral 
cavity from periodontal disease and inhibits the growth and 
spread of oral cancer. Melatonin can prevent stress-induced 
stomach mucosal damage by inhibiting the release of gastric 
acid and pepsin, two essential invasive elements in the for-
mation of gastric ulcers. With enhanced stomach blood flow, 
plasma gastrin levels, luminal NO release, and H. pylori 

eradication or a decrease in H. pylori-induced pro-inflam-
matory cytokine levels; melatonin also speeds up the heal-
ing of peptic ulcers. Because of its direct inhibitory effect 
on cell proliferation and metastasis, suppression of tumor 
cell invasiveness, activation of anti-oxidative stress, stimu-
lation of the anticancer immune system, and induction of 
cancer cell apoptosis, melatonin is used as a complementary 
therapy in GIT malignancies in addition to chemotherapy 
and immunotherapy. The intestine, colon, and rectum tis-
sues also have high levels of melatonin, which affects their 
permeability and movements. Melatonin affects intestinal 
food and minerals absorption directly and indirectly through 
increasing CCK release, pancreatic amylase, and mucosal 
bicarbonate, and the slowing movement of peristalsis. Fur-
thermore, melatonin affects the intestinal bacterial composi-
tion; for example, it increases the beneficial bacteria such as 
lactobacillus in the intestine. Besides, melatonin is useful for 
reducing the symptoms of intestinal disorders such as IBS 
(by weakening serotonin function) and IBD (by reducing the 
severity of inflammation). Finally, melatonin is considered 
a regulatory hormone of food intake and appetite, and its 
administration can control food intake and lead to weight 
loss in obese people. Given these cases, melatonin can be 
considered a supplement with many benefits for the preven-
tion and treatment of GIT disorders.

Abbreviations  GIT: Gastrointestinal tract; ROS: Reactive oxygen 
species; RNS: Reactive nitrogen species; TNF-α: Tissue necrosis 
factor-α; OLP: Oral lichen planus; LSD1: Lysine-specific demethyl-
ase; PDTX: Patient-derived tumor xenograft; CREBBP: CREB-binding 
protein; TIMP1: Metalloproteinase1; CXCL: CXC chemokine ligand; 
HPDLC: Human periodontal ligament cells; RANKL: Receptor activa-
tors of the NF-kB ligand; HGF: Human gingival fibroblast; CNS: Cen-
tral nervous system; SOD: Superoxide dismutase; H. pylori: Helico-
bacter pylori

Fig. 4   The schematic diagram 
represents the crosstalk between 
melatonin and appetite
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