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Abstract
Background Gestational diabetes mellitus (GDM) is a condition that seriously threatens mother and child health. The inci-
dence of GDM has increased worldwide in the past decades. In addition, the complications of GDM such as type 2 diabetes 
(T2DM) and neonatal malformations could negatively affect the living quality of mothers and their children.
Aim It has been widely known that the imbalance of gut microbiota or called ‘gut dysbiosis’ plays a key role in the develop-
ment of insulin resistance and chronic low-grade inflammation in T2DM patients. However, the impacts of gut microbiota 
on GDM remain controversial. Here, we aim to comprehensively review the alterations of gut microbiota in GDM mothers 
and their offspring.
Results The alterations of Firmicutes/Bacteroidetes (F/B) ratio, short-chain fatty acid (SCFA)-producing bacteria, bacteria 
with probiotics properties and gram-negative lipopolysaccharide (LPS)-producing bacteria play a vital role in the develop-
ment of GDM. The beneficial roles of gut microbiota modification (probiotics, synbiotics and lifestyle modification) as a 
treatment of GDM were found in some, but not all studies.
Conclusion In the near future, gut microbiota modification may be considered as one of the standard treatments for GDM. 
Moreover, further studies regarding the specific gut microbiota that are associated with the early development of GDM are 
required. This may contribute to the novel diagnostic markers for early stages of GDM.

Keywords Gut microbiota · Gut dysbiosis · Gestational diabetes mellitus · Insulin resistance · Probiotics · Synbiotics

Introduction

Gestational Diabetes Mellitus (GDM) is one of the most 
common types of pregnancy complications [1]. In contrast 
to type 2 diabetes (T2DM), GDM emphasizes the first detec-
tion of hyperglycemia during pregnancy, which is becoming 

a global health problem in recent years. The prevalence of 
GDM is as high as 31% in European countries, while 1.5 in 
10 pregnant women were diagnosed with GDM in South-
east Asia [2]. Women with GDM are more likely to have 
comorbidities with other pregnancy complications such 
as pre-eclampsia, postpartum infection, preterm delivery, 
shoulder dystocia, metabolic syndrome, and cardiovascular 
diseases [3–5]. In addition, an infant born from the GDM 
mother is at a very high risk of developing larger size for the 
gestational age, fetal malformations, diabetic fetopathy, and 
neonatal hyperinsulinemia [6–8]. Several studies also found 
that children of GDM mother had a higher risk of impaired 
glucose tolerance (IGT), T2DM, metabolic syndrome, and 
even autism later in life [9–11].

The mucosal surface and lumen of gastrointestinal, res-
piratory, reproductive and urinary tracts is colonized by 
beneficial communities of microbes called as “microbiota” 
[12–14]. Among these diverse microbial habitats, the gas-
trointestinal tract, especially the distal colon, is populated 
with the largest density of microbiota, which is defined as 
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“gut microbiota”. Interactions between host cells and gut 
microbiota result in shaping host metabolism and immune 
response [15, 16]. Imbalanced population of normal gut 
microbiota or gut dysbiosis has been linked to several non-
communicable diseases such as metabolic syndrome, aller-
gic diseases, some types of cancer, and neurodegenerative 
diseases [17–20]. Considering gut microbiota and preg-
nancy, Koren and colleagues [21] firstly reported a direct 
link between gut dysbiosis and inflammation, adiposity, as 
well as insulin resistance in late pregnancy. After that, sev-
eral studies also demonstrated the role of gut microbiota in 
pregnancy and its complications, including GDM [22, 23].

To specifically focus on the association between gut 
microbiota and GDM, we comprehensively reviewed the 
alterations of gut microbiota in GDM mothers and their off-
spring. Additionally, the potential influence of modulation 
of gut microbiota composition as a treatment of GDM were 
discussed in this review article.

Search method and selection criteria

“GDM” or “Gestational diabetes” or “Gestational diabetes 
mellitus” or “Pregnancy hyperglycemia” or “Pregnancy 
glucose intolerance” or “Pregnancy insulin resistance” and 
“Gut microbiota” or “Gut microbiome” or “Gut bacteria” 
or “Gut dysbiosis” or “Intestinal microbiota” were used as 
keywords for literature searches from the PubMed database 
since January 2000 until December 2020. All relevant lit-
eratures in English, including clinical observation studies, 
and clinical trials were selected. Because we only focused on 
the changes in gut microbiota during GDM and the impact 
on the outcome of their newborns, any studies regarding gut 
microbiota analysis prior to GDM diagnosis were excluded.

Alterations of gut microbiota in GDM 
compared to normal pregnancy

Alterations of gut microbiota in women with GDM com-
pared to their non-GDM counterparts are listed in Table 1. 
Gut dysbiosis in GDM women was mainly characterized 
by changes in microbiome diversity, including alpha- and 
beta-diversity, i.e. within individuals and inter-individual 
species diversity, respectively. Moreover, various types 
of abnormal bacterial composition were also exhibited in 
GDM, including the changes at phylum, genus, and species 
levels. All these changes were reported at both mid-gestation 
(14–27 weeks) and late gestation (28–42 weeks).

Previous studies reported a reduction in alpha-diversity in 
the GDM group, when compared to that of normoglycemic 
women at both mid- and late gestation [24–26]. The reduc-
tion in alpha-diversity was also correlated with increased 

blood glucose level [25]. These results were consistent with 
other studies in obese, IGT and T2DM patients [27, 28]. 
However, some prior studies demonstrated no difference in 
alpha-diversity between the GDM and the non-GDM groups 
at late gestation [29–33]. This might be due to the over-
weight status of the control groups [29]. In contrast, another 
study observed an increase in alpha-diversity in the third 
trimester of GDM women, when compared to that of the 
control group [34]. The inconsistent results might be due 
to the too small sample size in each study, as well as some 
variation among studies such as different sample sources 
and analysis methods. A previous study compared the PCR 
results from the selection of different 16SrRNA regions of 
the gut microbiota in the same healthy individual [35]. They 
found that the richness of gut microbiota was higher using 
a primer for V1-V3 regions, when compared with using a 
primer for V3-V5 regions [35]. This finding suggested that 
the different primers or analytical methods may affect the 
experimental results. However, there is still no evidence of 
the direct comparison among different analysis methods in 
GDM patients. Therefore, a future study with a larger sample 
size, wider range of microbiome analysis, and adjustment 
of confounding factors is required. Regarding beta-diver-
sity, previous studies used UniFrac/Bray–Curtis distances 
analysis and found significant separation in beta-diversity 
between GDM and non-GDM individuals during their sec-
ond and third trimesters [24, 25, 30, 31]. While another two 
studies showed no difference in the beta-diversity between 
GDM and non-GDM women in late pregnancy [29, 34]. The 
inconsistency of the results might be related to the difference 
in inclusion criteria, sample sizes and methods of analysis. 
Therefore, either a large-population study or a meta-analysis 
adjusting for those confounding factors is necessary.

At the phylum level, an increase in Firmicutes/Bacteroi-
detes (F/B) ratio in late pregnancy were exhibited in the 
GDM group when compared with non-GDM [34]. Previous 
studies indicated that a higher F/B ratio was associated with 
obesity [36] and an aggravation of low-grade inflammation 
[37].

At the genus level, the elevated numbers of gram-negative 
bacteria, including Parabacteroides, Prevotella, Haemophi-
lus and Desulfovibrio were observed in the intestine of GDM 
when compared with those of non-GDM women in both 
mid- and late pregnancy [24, 25, 29, 31, 34]. These increased 
bacteria were also reported to be positively associated with a 
higher blood glucose on an individual level [24, 25, 29, 34]. 
One of the outer membrane components of gram-negative 
bacteria, lipopolysaccharides (LPS), is considered as an 
endotoxin that can contribute to low-grade inflammation and 
insulin resistance [38, 39]. Consistently, LPS biosynthesis 
and transport system were positively correlated with blood 
glucose from an oral glucose tolerance test (OGTT) on an 
individual level [24]. Meanwhile, a reduction was found in 
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the relative abundance of SCFA-producing genus Faecali-
bacterium, Ruminococcus, Roseburia, Coprococcus, Akker-
mansia, Phascolarctobacterium, and Eubacterium in GDM 
women, when compared with non-GDM at their second and 
third trimester [22, 24–26, 29, 32–34]. These alterations 
were reported to be associated with increased blood glucose 
on an individual level [22, 24–26, 29, 32–34]. The SCFAs 
can combine with G protein-coupled receptors (GPR) 41 and 
GPR 43 to promote the secretion of peptide tyrosine tyrosine 
(PYY) and glucagon-like peptide (GLP)-1 from enteroen-
docrine cells [40, 41]. This helps regulate insulin release 
and promote glucose metabolism [42]. SCFAs also plays 
vital role in strengthening the intestinal barrier, as well as 
decreasing inflammation and oxidative stress by activating 
the peroxisome proliferator-activated receptor (PPAR) path-
way [43–46]. A study revealed that there were abnormalities 
in the SCFA pathway, as indicated by a reduction in acetate, 
butanoate, and propanoate in GDM women when compared 
with normoglycemic ones in late gestation [30]. Moreover, 
aromatic amino acids (AAA)-degrading bacteria such as 
Clostridium, Fusobacterium, Eubacterium were found 
decreased in GDM women, when compared with those of 
the non-GDM group [24, 34]. In addition, indoles—a prod-
uct of aromatic amino acids by bacteria—were also reported 
to be able to promote the release of GLP-1 through the aryl 
hydrocarbon receptor (AhR) pathway [47–49]. Indoles 
can also strengthen the intestinal mucosal barrier [50]. 
Wang and colleagues [22] reported that Faecaibacterium 
(SCFA-producing genus)/Fusobacterium (gram-negative 
AAA-degrading bacteria) ratio was reduced in women with 
GDM at late-gestation, compared with that of non-GDM. 
Additionally, previous studies observed that the genus Col-
linsella, Blautia, Megamonas and Dorea were increased in 
GDM patients in late pregnancy [24, 29, 34]. These elevated 
genera have also been reported to related with a higher blood 
glucose on an individual level [24, 29, 34].

At the species level, previous studies reported an increase 
in Bacteroides (sp.dorei, sp.3_1_3FAA, sp.3_1_19) and a 
reduction in SCFA-producing species Bifidobacterium bifi-
dum and Lactobacillus casei in GDM patients, when com-
pared with non-GDM at mid- and late gestation [24, 30]. 
These alterations were also related to elevated blood glucose 
levels [24, 30]. These results suggested that some specific 
Bacteroides species were increased in GDM. Regarding Bifi-
dobacterium spp. and Lactobacillus spp., these two bacte-
ria have been considered as probiotics that alleviate insulin 
resistance by decreasing systemic inflammation, regulating 
immune function, and improving intestinal mucosal perme-
ability [51–54].

In summary, the gut dysbiosis of GDM is character-
ized by changes in alpha-diversity (five out of ten studies), 
a change in beta-diversity (seven out of ten studies), an 
increase in gram-negative bacteria (five out of 11 studies) G
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and some gram-positive bacteria (five out of 11 studies) such 
as Collinsella, Blautia, Megamonas, and Dorea, as well as 
a reduction in SCFA-producing bacteria (eight out of 11 
studies), and a decrease in bacteria with probiotics prop-
erties (two out of 11 studies). Most of these articles were 
reported a correlation between the changes in these specific 
microbiota and elevated blood glucose (night out of ten stud-
ies). In fact, two previous studies reported the alterations 
of gut microbiota at the first trimester of pregnant women 
who were subsequently diagnosed with GDM at their second 
trimester, when compared to that of pregnant women who 
did not develop GDM [33, 55]. Therefore, changes in gut 
microbiota at early pregnancy can be considered as a poten-
tial diagnostic tool for GDM or may be a cause of GDM. On 
the other hand, prior studies revealed that the gut microbiota 
composition of women who were diagnosed with GDM at 
their first trimester was not different from those of women 
without GDM at the same gestational age [26, 56], suggest-
ing the gut dysbiosis may be a consequence of GDM. Hence, 
the argument that gut microbiota is a cause or a consequence 
of GDM, remains controversial and needs further studies.

Alterations of gut microbiota in GDM 
at different time points

Alterations of gut microbiota in GDM individuals in late 
gestation (28–42 weeks), compared with their baseline at 
mid-gestation (14–27 weeks) are summarized in Table 2. 
These include alterations of alpha- and beta-diversity, as 
well as changes in phylum and genus levels.

A higher alpha-diversity in late pregnancy of GDM indi-
viduals when compared to that of their mid-gestation was 
observed in two previous studies [23, 57]. Ferrocino et al. 
believed that an increase in alpha-diversity correlated with 
gestational weight gain [57]. However, this requires further 
validation. Furthermore, Ferrocino and colleagues reported 
a significant separation in beta-diversity at late gestation of 
GDM patients when compared with their second trimester 
[57]. This result supported the findings in normal pregnancy, 
in which there was a dramatic expansion of beta-diversity 
during the third trimester [21].

At the phylum level, an increase in Firmicutes, a decrease 
in Bacteroides, and an increase in F/B ratio were revealed at 
late gestation of GDM women, when compared to their lev-
els at mid-gestation [23, 57]. These results were also associ-
ated with weight gain in their third trimester [57].

Consistent with the results at phylum level, the genera 
belonging to phylum Firmicutes such as L-Ruminococ-
cus, Blautia, and Lachnospiraceae were increased, while 
those belonging to Bacteroides such as a butyrate pro-
ducer Rikenellaceae were decreased in late pregnancy of 
GDM individuals, when compared with their baseline at 

mid-pregnancy [57]. Notably, an increased abundance of 
L-Ruminococcus, Blautia, and Lachnospiraceae were cor-
related with higher oligosaccharides intake [57].

In summary, dynamic changes in the gut microbiota com-
position from mid- to late gestation were manifested by an 
increase in alpha-diversity (two out of two studies), a change 
in beta-diversity, as well as an increased F/B ratio (two out 
of two studies) from the mid-gestation baselines. Most of 
which were associated with maternal blood glucose, mater-
nal BMI, and maternal oligosaccharides intake (one out of 
two studies). Interestingly, Ye et al. [32] reported that the 
dynamic changes in gut microbiota composition from the 
first trimester to the third trimester of non-GDM was greater 
than those of GDM individuals. Another previous study also 
revealed that the dynamic changes in the gut microbiota of 
GDM were associated with increased inflammatory status 
from the first trimester to the second trimester [26]. In addi-
tion, Coprococcus catus was found increased in GDM at the 
third trimester (mean gestational age of 35.2 weeks) when 
compared with their first trimester (mean gestational of 
13.9 weeks) [56]. However, the mechanisms that are respon-
sible for the difference of dynamic changes between non-
GDM and GDM have not been determined, and therefore 
future studies identifying these mechanisms are needed to 
be established. Furthermore, Fugmann et al. [58] suggested 
that gut microbiota dysbiosis and insulin resistance existed 
in pre-GDM women after 3–16 months delivery. This sup-
ports the fact that women with GDM have a high risk of 
developing T2DM later in their life.

Alterations of gut microbiota in offspring 
of GDM mothers

Previous studies regarding the changes in gut microbiota in 
the offspring of GDM mothers when compared with those of 
normoglycemic mothers are listed in Table 3. These include 
changes in alpha-diversity, phylum, and genus levels.

Prior studies exhibited a reduction in alpha-diversity in 
neonates of GDM mother when compared with those of 
mothers without GDM [23, 59]. Regarding beta-diversity, a 
previous study reported a significant separation in the beta-
diversity between the offspring of GDM and non-GDM 
mothers [59].

At the phylum level, the abundance of Actinobacteria 
was greater in neonates of GDM mothers, and these were 
also associated with increased level of maternal fasting glu-
cose [59]. Meanwhile, Bacteroidetes were reduced in the 
1-day-old neonates of GDM mothers, which negatively cor-
related with the maternal fasting glucose [59]. On the other 
hand, another previous study revealed a higher abundance 
of Bacteroidetes in 1-week old infants of GDM mothers, 
when compared with those of non-GDM mothers [23]. The 
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inconsistent results between these two studies might be due 
to different ages of the neonates. Therefore, a further study 
regarding a dynamic change of gut microbiota in the off-
spring of GDM mothers is needed.

At the genus level, opportunistic pathogens including 
Escherichia and Parabacteroides increased, while the probi-
otic (Lactobacillus) decreased in the neonates of GDM indi-
viduals [23, 59]. Additionally, a positive correlation between 
the abundance of Clostridium in infants and maternal BMI 
was reported [59]. Moreover, the abundance of Ruminococ-
cus in infants was found positively correlated with maternal 

oligosaccharide intake and negatively correlated with mater-
nal saturated fatty acids intake [23]. Notably, a literature 
reported that the abundance of Lactobacillus iners was 
increased in meconium of newborns from GDM mothers, 
which emphasized that the colonization of some species was 
influenced by maternal GDM status [22].

All these studies suggested that gut microbiota composi-
tion in the offspring of GDM mothers was characterized 
by a reduction in alpha-diversity (two out of three studies), 
increased Actinobacteria (two out of three studies), Escheri-
chia and Parabacteroides (two out of three studies), as well 

Table 2  Alterations of gut microbiota in GDM patients at late gestation, when compared with their baseline at mid-gestation

GDM gestational diabetes mellitus, N sample size, Method the method that used for gut microbiota analysis, PCR polymerase chain reaction, ↑ 
increased in GDM women at late gestation when compared with their baseline at mid-gestation, ↓ decreased in GDM women at late gestation 
when compared with their baseline at mid-gestation, ↔ shown no statistical difference between the two groups, – no data provided, GW gesta-
tional weeks, Y years, BW body weight, BMI body mass index, TG triglyceride, TC total cholesterol, FPG fasting plasma glucose, HOMA-IR 
homoeostasis model assessment of insulin resistance, HbA1c glycated hemoglobin, CRP C-reactive protein, F Firmicutes, B Bacteroidetes, S 
statistically significant separation, LPS Lipopolysaccaride, Δ delta (final values − baseline values), OGTT  oral glucose tolerance test

Participants/age (years 
old)/GW (weeks)/N/
method

Major findings Interpretation References

Metabolic 
parameters

Gut microbiota Correlation

Profiles Diver-
sity

Increase Decrease α β

GDM 
women/35.5 ± 3.8/38/41

Baseline/35.5 ± 3.8/24–
28/41

PCR
16 s rRNA(V3-V4)

↑BW, BMI
↑TG, TC
↑Oligosac-

charide 
intake

Pathway
 ↑Carbo-

hydrate 
metabo-
lism

 ↑Biosyn-
thesis of 
amino 
acids

 ↓Fatty acid 
metabo-
lism

↔ FPG, 
Insulin

↔ HOMA-
IR, 
HbA1c

↔ CRP

Phylum
 Firmicutes
 F/B ratio
Genus
 Blautia
 Faecalibacterium
 Butyricicoccus
 Coprococcus
 L-Ruminococcus
 Lachnospiraceae

Phylum
 Actinobacteria
 Bacteroidetes
Genus
 Bacteroides
 Rikenellaceae
 Collinsella

↑ S Positive between 
ΔInsulin and Col-
linsella, Coproba-
cillus, Blautia

 ΔHOMA-IR 
and Collinsella, 
Butyricimonas

 ΔCRP and Sut-
terella

 LPS biosynthesis 
and Sutterella, 
Bacteroides

 Oligosaccharides 
and L-Rumino-
coccus, Lachno-
spiraceae

Negative between 
ΔFPG and Fae-
calibacterium

No correlations 
between blood 
glucose, insulin, 
lipids and 
Rikenellaceae

An increasing in 
alpha-and beta-
diversity, F/B 
ratio, Faecalibac-
tirum, Blautia, 
and decreasing 
Bacteroides and 
Collinsella were 
found in the late 
pregnancy in 
GDM women

[57]

GDM 
women/37.1 ± 4.5/38/29

Baseline/37.1 ± 4.5/24–
28/29

PCR
16 s rRNA(V3-V4)

– Phylum
 Firmicutes
 F/B Ratio

Phylum
 Bacteroidetes

↑ – – The development 
of GDM led to 
gut dysbiosis 
as indicated by 
increasing alpha-
diversity, F/B 
Ratio, Firmicutes 
and declining 
Bacteroidetes

[23]
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as decreased Bacteroidetes (one out of three studies) and 
bacteria with probiotic properties (two out of three stud-
ies), when compared to the offspring of non-GDM mothers. 
Most of which were associated with maternal blood glu-
cose, maternal BMI, as well as maternal oligosaccharides 
and saturated fatty acids intake (two out of three studies).

Gut microbiota modification as a treatment 
of GDM

Gut microbiota modification as a treatment of GDM are 
summarized in Table 4. This gut microbiota modification 
includes probiotics and synbiotics.

Probiotics are living organisms that display benefits to 
the host in a proper amount, and have been widely studied 
in insulin resistance and T2DM [60–63]. Randomized con-
trolled trials (RCTs) gave a combination capsule of Lactoba-
cillus acidophilus, Lactobacillus casei, and Bifidobacterium 
bifidum, with or without Lactobacillus fermentum at the dose 
of 2 × 109 CFU/g daily to GDM women at mid-gestation [64, 
65]. Six weeks after treatment, an amelioration of insulin 
resistance and improved lipid metabolism were observed 
when compared to those of GDM received a placebo [64, 
65]. These were indicated by a reduction in blood glucose, 
insulin, homoeostasis model assessment of insulin resistance 
(HOMA-IR), and very low-density lipoprotein cholesterol 
(VLDL) level [64, 65]. A higher PPAR-γ gene expression 
and a lower level of pro-inflammation cytokines were also 
exhibited after probiotic supplementation [65], suggest-
ing that probiotics alleviate insulin resistance and chronic 
inflammation at least through the PPAR pathway. Interest-
ingly, a recent study reported that a treatment with probi-
otics—B. animalis (1 × 1010 CFU/day) plus L. rhamnosus 
(1 × 1010 CFU/day)—for 21 weeks could decrease the abun-
dance of an inflammation-associated species—Bacteroides 
ovatus—[66] in obese GDM women, when compared with 
that of placebo group [56].

Synbiotics are a combination of probiotics and prebiot-
ics, considered to enhance more benefits for health effects 
more than using each one alone [67]. GDM patients in 
their second trimester were prescribed with either a pla-
cebo or a synbiotic capsule that consisted of L. acidophilus 
(5 × 1010 CFU/g), L. plantarum (1.5 × 1010 CFU/g), L. fer-
mentum (7 × 109 CFU/g), L. gasseri (2 × 1010 CFU/g) and 
38.5 mg of fructooligosaccharide (FOS) for 6 weeks [68]. 
Thereafter, the positive effects of synbiotics on the regula-
tion of oxidative stress and lipid metabolism were exhib-
ited, as indicated by an increase in total antioxidant capacity 
(TAC), increased high density lipoprotein (HDL) level, and 
reduced low-density lipoprotein (LDL) level [68]. How-
ever, synbiotics showed no beneficial effect on the improve-
ment of insulin sensitivity in those GDM women, which 

might be due to higher fat and calorie intake in the treat-
ment group when compared with the placebo group [68]. 
Another daily synbiotic supplement at mid-gestation that 
consists of L.acidophilus, L.casei, and B.bifidum, at the dose 
of 2 × 109 CFU/g each plus 0.8 g of inulin for 6 weeks also 
alleviated insulin resistance and oxidative stress, as indicated 
by lower level of insulin, HOMA-IR, and higher level of 
quantitative insulin sensitivity check index (QUICKI) and 
TAC when compared to placebo group [69, 70]. Moreover, 
the neonates of GDM mothers exhibited better neonatal 
outcomes following the synbiotic supplement, as indicated 
by decreased incidence of postnatal hyperbilirubinemia and 
postnatal hospitalization [70].

In summary, probiotics and synbiotics play a vital role 
in the improvement of insulin sensitivity (three out of five 
studies) and lipid metabolism (three out of five studies) as 
well as decreased oxidative stress (two out of five studies) in 
GDM patients via the modification of gut microbiota compo-
sition. From two meta-analysis studies, it was revealed that 
probiotics and synbiotics could alleviate insulin resistance 
and chronic inflammation, but these treatments could not 
reduce neither blood glucose nor the incidence of GDM, 
when compared with the placebo group [71, 72]. Similarly, 
another study reported that probiotics supplementation did 
not reduce the incidence of GDM in overweight women [73]. 
A study observed that either probiotics alone or probiot-
ics plus fish oil could alter the gut microbiota composition 
in non-GDM, but not in GDM individuals [56]. Therefore, 
the supplementation of probiotics or synbiotics for women 
with GDM remains controversial. A previous study found 
some changes in gut microbiota composition of GDM at 
the third trimester after 10 weeks of lifestyle modifications, 
when compared with those of GDM patients who did not 
follow the recommendations [57]. These changes including 
an increase in butyrate-producing genus (Faecalibacterium) 
as well as a reduction in gram-negative genera (Alistipes 
and Bacteroides) [57]. Additionally, a previous study sug-
gested that dietary modification and exercise interacted each 
other to alter the gut microbiota composition of pregnant 
rats [74]. Interestingly, moderate exercise before and during 
pregnancy was found to be more beneficial in regulating gut 
dysbiosis and metabolic function in GDM rats than the exer-
cise only during pregnancy [74]. Underscoring the impor-
tance of early lifestyle interventions on GDM. However, 
clinical studies investigating the effects of exercise on the 
gut microbiota of GDM patients have never been conducted.
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Conclusion, future direction and clinical 
application

The relationships between gut microbiota and GDM are 
illustrated in Fig. 1. Based on the current evidence, gut dys-
biosis in GDM patients is characterized by changes in alpha- 
and beta-diversity, an increase in F/B ratio and gram-nega-
tive bacteria, a reduction in the relative counts of the bacteria 
with probiotics properties, and decreased SCFA-producing 
bacteria. Most of which are associated with elevated blood 
glucose. Although there were evidence suggesting the altera-
tions of gut microbiota composition in GDM when com-
pared to the non-GDM group, the trend of the alterations in 
some bacteria were inconsistent. For example, even though a 
SCFA-producing bacterium Bacteroidetes plays a beneficial 

role in the gut, it is considered as a gram-negative bacterium 
that can produce a pro-inflammatory marker—LPS [75]. 
Therefore, it is not surprising that some studies reported that 
some species belong to Bacteroidetes phylum was elevated 
in GDM and was positively correlated with high blood glu-
cose [24, 31]. In other words, Bacteroidetes can be either 
increased or decreased in GDM. Other examples are genus 
Faecalibacterium and genus Blautia, in which the abun-
dance of both genera can be either increased or decreased 
in GDM, depending on their subgenus [29]. Thus, it is nec-
essary to study the role of subgenus in GDM in the future. 
Importantly, different methods of analyses can lead to the 
inconsistent findings among studies. PCR can be more eco-
nomical and efficient, but whole gene shot-gun sequencing 
can go deep to a subgenus. In addition, there is no consensus 

Fig. 1  The relationship between gut microbiota dysbiosis and GDM. 
The gut microbiota dysbiosis in GDM includes a reduction in bac-
teria with probiotics properties, SCFA-producing bacteria and AAA-
degrading bacteria. The lower level of SCFAs and indoles in the 
intestine leads to decreased GLP-1 and PYY secretion. Resulting in 
impaired insulin selection and glucose metabolism. Meanwhile, the 
decrease in SCFAs and causes increased gut mucosal permeability 
and pro-inflammation cytokines. b Higher F/B ratio and gram-nega-
tive bacteria. Higher F/B ratio is associated with low-grade inflam-
mation. Gram-negative bacteria lead to increasing gut mucosal per-
meability and LPS level. LPS accelerates pro-inflammatory cytokine 
production by affecting the TLR4 pathway, resulting in abnormal 

expression and phosphorylation of downstream regulators of insulin 
signaling IRS-1 and GLUT4. These contribute to low-grade inflam-
mation and insulin resistance in adipose tissue and skeletal muscle, 
as well as increased CRP production by the hepatocytes. c Probiot-
ics, synbiotics and lifestyle modification alleviate chronic low-grade 
inflammation and insulin resistance in GDM women, possibly by 
regulating gut microbiota. GDM gestational diabetes mellitus, SCFA 
short-chain fatty acid, AAA  aromatic amino acids, GLP-1 glucagon-
like peptide-1, PYY peptide tyrosine tyrosine, AhR aryl hydrocarbon 
receptor, GLUT4 glucose transporter type 4, F/B ratio Firmicutes/
Bacteroidetes ratio, LPS lipopolysaccharides, TLR4 toll-like receptor, 
IRS-1 including insulin receptor substrate 1, CRP C-reactive protein
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on the selection of 16SrRNA region in PCR. Currently, most 
studies have selected V3–V4 variable region, but some stud-
ies believe that V1–V2 region is more representative. There-
fore, future comparative studies on different regions of 16S 
rRNA in gut microbiota may be helpful to establish the most 
appropriate method for gut microbiota analysis in GDM. 
Furthermore, based on the characteristics of the analysis 
method, the β-diversity was just described as “difference” 
or “no difference” in most of the articles. Indeed, only few 
articles specified the β-diversity as “increasing” or “decreas-
ing”. This makes the description vague and may limit the 
interpretation.

The alterations of gut microbiota in offspring of the GDM 
mother include increased opportunistic pathogens, a reduc-
tion in alpha-diversity and decreased bacteria with probiot-
ics properties, as depicted in Fig. 2. The colonization of gut 
microbiota in newborns is closely related to the delivery 
pattern. Previous studies found that the composition of gut 
microbiota of newborns delivered naturally is similar to that 
of their mothers’ vaginal microbiomes, whereas this asso-
ciation was not observed in cesarean section delivery [76]. 
In addition, the gut microbiota of newborns is affected by 
the feeding pattern. Indeed, previous studies reported that 
breast-fed babies exhibited more abundance of Actinobac-
teria than the non-breast-fed babies, suggesting that breast 

milk may promote colonization of Actinobacteria in the gut 
of newborns [23]. Given that there have been only few stud-
ies in this area, the key factors affecting the composition of 
gut microbiota in newborns of GDM mother have not yet 
been established. Therefore, the effects of the composition 
of gut microbiota, blood glucose, BMI, and dietary intake 
of the mothers on the gut microbiota of their newborns are 
needed to be further investigated.

As previously summarized in Table 4, probiotics, syn-
biotics, and lifestyle modifications can help reduce blood 
glucose, insulin resistance, and oxidative stress in GDM in 
some, but not all studies. It is important to note that only 
few of these prior studies provided data regarding the daily 
dietary intake of GDM individuals. Diet is well known to 
play a crucial role in the alterations of gut microbiota com-
position [77]. Previous studies suggested that dietary habits 
led to different gut predominant bacteria, which resulted in 
different responses to specific diets [77]. Moreover, increase, 
as well as a reduction in Faecalibacterium were observed in 
GDM patients who failed to control their glucose level by 
diet modification, when compared to those of GDM indi-
viduals whose glucose regulation was successful by diet 
control at second trimester [32]. According to this result, 
the effects of diet on the gut microbiota in GDM require 
further investigation.

Fig. 2  Factors influencing gut microbiota of the offspring from GDM 
mother. Abnormal maternal parameters such as increased fasting 
blood glucose level and maternal BMI lead to the dominance of pro-
inflammatory bacteria, decreased α-diversity and bacteria with pro-

biotics properties in fetal gastrointestinal tract. Moreover, maternal 
dietary intake also alters the composition of gut microbiota in their 
newborns. BMI body mass index, GDM gestational diabetes mellitus
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Although the findings among several previous studies 
were controversial, it is generally accepted that gut micro-
biota plays a key role in GDM during pregnancy. However, 
there were only few studies investigating about the altera-
tions of gut microbiota composition in GDM prior to preg-
nancy and the postpartum period of GDM women. Further-
more, maternal BMI, diet, sex hormone levels, the dosage 
of insulin therapy, and defecation habit during pregnancy 
may affect gut microbiota of GDM. Therefore, future stud-
ies regarding the gut microbiota composition that cover 
those factors at pre-pregnancy, early pregnancy, mid- and 
late pregnancy, as well as postpartum period are necessary. 
Additionally, our report is neither a systematic review nor 
meta-analysis, and thus the study quality and risk of bias 
are not assessed. Therefore, future systematic reviews or 
meta-analyses may help better understanding the relation-
ship between gut microbiota and GDM. Moreover, the future 
placebo-controlled randomized trials with large-sample size 
regarding the effects of probiotics and synbiotics supplemen-
tation on GDM are required. After the consistent outcomes 
are established, gut microbiota modification may be con-
sidered as one of standard treatments for GDM. Moreover, 
further studies determining the specific gut microbiota asso-
ciated with the early development of GDM are required. All 
of these future studies may contribute to novel diagnostic 
and therapeutic paradigms for GDM.
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