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Abstract

Probiotics have been defined as “living microorganisms that create health benefits in the host when taken in sufficient
amounts. Recent developments in the understanding of the relationship between the microbiom and its host have
shown evidence about the promising potential of probiotics to improve certain health problems. However, today,

there are some confusions about traditional and new generation foods containing probiotics, naming and classifica-
tions of them in scientific studies and also their marketing. To clarify this confusion, the Food and Drug Administration
(FDA) declared that it has made a new category definition called "live biotherapeutic products" (LBPs). Accordingly,
the FDA has designated LBPs as “a biological product that: i)contains live organisms, such as bacteria; ii)is applicable to the
prevention, treatment, or cure of a disease/condition of human beings; and iii) is not a vaccine”. The accumulated literature
focused on LBPs to determine effective strains in health and disease, and often focused on obesity, diabetes, and
certain diseases like inflammatory bowel disease (IBD).However, microbiome also play an important role in the patho-
genesis of diseases that age day by day in the modern world via gut-brain axis. Herein, we discuss the novel roles of
LBPs in some gut-brain axis related conditions in the light of recent studies. This article may be of interest to a broad

readership including those interested in probiotics as LBPs, their health effects and safety, also gut-brain axis.
Keywords: Probiotics, Live biotherapeutic products (LBPs), Gut brain axis, Neurodegenerative diseases, Safety

Introduction

One of the most popular topics and research areas of
recent years is the microbiome, microbiome modulation
and factors that modulate the microbiome, especially
nutrition. In this regard, the technological develop-
ments created by the 4th Industrial Bio-Revolution and
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especially the technological developments in the field of
multiomics, such as The Human Genome Project (HGP),
National Institutes of Health (NIH) Human Microbiome
Project, European Metagenomics of the Human Intesti-
nal Tract (MetaHIT) genome and microbiome projects
play an important role [1-4] In these projects, microbi-
ome characterization has been made and continues to be
done with technologies such as 16S rRNA-encoding gene
(16S) and metagenomic shotgun sequencing in different
parts of the human body with multiomic technologies [1,
4].

The aggregate genomes of microorganisms in a spe-
cific habitat are referred to as the microbiome. The
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microbiome has been thought of as a virtual organ of the
body for some time [5]. Berg et al. [6] defined the micro-
biome as “It is a characteristic microbial community
occupying a reasonable well-defined habitat which has
distinct physiochemical properties” [6]. In addition, unlike
the microbiome, the microbiota was defined by the same
researchers from a different perspective like “ It consists
of the assembly of microorganisms belonging to differ-
ent, while “their theatre of activity” includes microbial
structures, metabolites, genetic elements, and relic DNA
embedded in the environmental conditions of the habitat”
[6].

Determining the structure and functional capability of
the microbiome in health and disease, as well as the vari-
ables that influence it, is critical [7]. Microbiome-micro-
biota is a very dynamic ecosystem and can be affected
by many modifiable and unchangeable factors for exam-
ple genetic factors, age, geography, drug treatments [8].
Nutrition, which is an important source and modulator
of biotics, is one of the most important modifiable fac-
tors that manipulate microbial diversity, composition
and stability, affect the composition of microbiome and
microbiota, and have the potential for therapeutic use
depending on some factors [9]. Also antioxidants (vita-
mins, polyphenols etc.) are effective on gut microbiota. It
has been stated that antioxidants reduce inflammation of
gut microbiota, affect microbiota composition, intestinal
mucosal barrier, short -chain fatty acids production and
effect on the immune system [10, 11].

At this point, probiotics, metabolites of probiotics
and modulators of probiotics play an important role.
However, today, there are some confusions about tra-
ditional and new generation foods containing probiot-
ics and some naming of some supplements, their use
in scientific studies and their marketing [12]. In order
to resolve this confusion, the Food and Drug Adminis-
tration (FDA) declared that it has made a new category
definition called "live biotherapeutic products” (LBPs)
and the European Pharmacopoeia (Ph. Eur.) urgently
determined the requirements for this new drug category
[13, 14]. Accordingly, the FDA has designated LBPs as “a
biological product that: i) contains live organisms, such
as bacteria; ii) is applicable to the prevention, treatment,
or cure of a disease or condition of human beings; and
iii) is not a vaccine” [13]. European Pharmacopoeia (Ph.
Eur.) defined LBPs as “medicinal products containing live
micro-organisms such as bacteria or yeasts for human
use” [14].

Although there is a literature focused on traditional
probiotics, especially lactic acid bacteria (LAB), to deter-
mine effective strains in disease and health, such studies
fall short of LBPs and often focus on obesity, diabetes,
and certain diseases for instance Inflammatory bowel
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disease (IBD) [8]. However, the microbiome and microbi-
ota play a significant role in the ethology of diseases that
continue to be associated to stress in the modern world
and age day by day [12]. Because there is a connection
between the gastrointestinal system and the central nerv-
ous system (CNS). This link, which plays an important
role in the pathogenesis of related diseases, is mediated
by inflammatory cytokines, vagus nerve, neurotransmit-
ters, and hypothalamic—pituitary—adrenal axis (HPA)
[15]. There is growing evidence that LBPs affect the gut-
brain axis, which in turn affects disorders related to the
axis.

Gut-brain axis related conditions refer to many condi-
tions from psychological disorders such as depression,
anxiety, stress, bipolar disorder, and schizophrenia to
neurological problems such as autism, Alzheimer’s and
Parkinson’s. Current literature continues to present stud-
ies on the relationship between psychological conditions
and LBPs [16—19]. It is accepted that the gut microbiota
has a role in regulating psychological health in addition
to physical health through the gut-brain axis. Besides
negative changes in the intestinal microbiota may cause
psychological disorders [20]. As with psychological dis-
orders, the alteration of gut-brain axis interactions has
been advocated as a potential cause of some neurologi-
cal diseases [21]. In this review article, promising roles,
mechanisms of action and possible safety issues of LBPs
in gut-brain axis related neurological conditions are dis-
cussed in the light of current human and animal studies.

Gut-brain axis related neurological conditions
Autism
Autism is defined by social communication and inter-
personal difficulties as well as limited repetitive behavior,
activities, and interests. Defination of autism, accord-
ing to the 5th Edition of the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) as a condition that
occurs with abnormalities in social communication and
interaction and with repetitive, limited behavioral pat-
terns or activities [22]. According to WHO-2018, approx-
imately one in every 160 kids worldwide has autism. In
the United States of America (USA), autism affects about
one out of every 54 children nowadays [23]. Boys are four
times as likely than girls to have autism [24]. The rea-
son for this situation is not clear, but it is thought to be
among the possibilities that it is related to estrogen and
testosterone levels. Disruption of the transsulfuration
pathway of testosterone [25], neuroprotective property of
estrogen, and modulation of the gut microbiome [26] are
suggested as reasons for the prevalence of autism in men.
Currently, there is no definitive treatment routinely
used for autism. Physical therapy, cognitive educa-
tion and sensory integration are among the treatments
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applied. According to new research, altering the gut
microbiome may be a successful treatment for childeren
with autism. Probiotics, prebiotics, microbiota transfer
therapy, fecal microbiota transplantation (FMT), and var-
ious dietary treatment methods are gaining importance
[27].

Causes of autism include genetic and environmental
factors (for example oxidative stress, parental age, fetal
infections, and fetal testosterone levels). Nutritional defi-
ciencies due to selective eating behaviors of individuals
with autism also have a significant influence in autism
[28, 29]. Gastrointestinal symptoms including constipa-
tion, diarrhea, reflux, vomiting, discomfort, abdominal
pain, gas, and unusually foul-smelling stools are com-
mon in autism [30]. It is stated that one of the main fac-
tors of gastrointestinal dysfunction in autism is "leaky
gut syndrome” [27]. The epithelial cells are oblong with
little paracellular space between them. Antigenic materi-
als taken into the body cause inhibition of some enzymes,
causing epithelial cells to become "round", which creates
a significant increase in paracellular space. This situation,
in which intestinal permeability is increased, may cause
food-derived peptides to enter the circulation, as well as
bacterial metabolites. These antigenic materials may trig-
ger immune responses that influence neuronal signalling
or cause the material to interact directly with the periph-
eral nervous system when they enter the circulation. In
the pathophysiology of autism, increased intestinal per-
meability is assumed to be the link between the gut and
the brain. [31]. In addition, it is stated that bacterial tox-
ins and metabolites may cause increased oxidative stress
and deterioration in detoxification mechanisms in indi-
viduals. [32].

Dysbiosis in the microbiota can be caused directly by
certain genetic and environmental risk factors. Dysbiosis
is increasingly being recognized as a feature of autism.
[23]. The two dominant bacterial strain in the healthy
human microbiota are the phyla Bacteriodetes and Firmi-
cutes [33]. It was observed that Bacteroidetes and Proteo-
bacteria were higher and Actinobacteria and Firmicutes
were lower in a group of children with autism [34].
Table 1 lists the alterations in the microbiome of people
with autism.

In the presence of autism, there is a generally less
diverse microbiota. Dysbiosis is stated to be present
when autism is diagnosed, but a defined microbial sig-
nature for autism has not been identified. Reasons for
uncertainty include methodological changes in symptom
severity, lifestyle, comorbid conditions, medical history,
and inherent heterogeneity of autism cohorts [34].

Low-grade systemic inflammation, increased intestinal
permeability, and neuroinflammation are all symptoms of
dysbiosis. Between the ENS, CNS, ANS, and HPA axis,
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Table 1 Change in microbiota composition in autism
Increments Descendants Reference
Bacteroidetes - [33]
Bacteroides vulgatus
Desulfovibrio spp.
- Prevotella [34]

Coprococcus Veillonellaceae

Lactobacillus Bifidobacter [35]
- Sutterella spp. [36]
Clostridium histoliticum Clostridium, cluster I and I, [37]
Desulfovibrio spp. Bacteroides/Firmicutes ratio [38]

Lactobacillus spp

Clostridium, boltae, - (39]
Clostridium, cluster | and X1

there are complex, bidirectional integrated signalling net-
works that make up the gut-brain axis [40, 41]. The pre-
frontal cortex, hypothalamus, and limbic system among
other emotional and cognitive brain regions, have been
demonstrated to link with gastrointestinal function [42].
These processes can be influenced indirectly by the gut
microbiome’s metabolites and inflammatory mediators
and directly by vagal stimulation. It has been discov-
ered that the renin-angiotensin system has a role in the
pathogenesis of associated illnesses as well as the modu-
lation of brain function. High levels of oxidative stress,
apoptotic pathways, and neuroinflammatory diseases are
brought on by excessive activation of the ACE/Angio-
tensin II/Angiotensin type-1 receptor (AT-1) axis [43].
Meanwhile, it has been demonstrated that the patho-
physiology of ASD is functionally related to immune sys-
tem malfunction and an excess of reactive oxygen species
(ROS) [44]. Therefore, possible risk factors for ASD can
be suggested for ACE gene polymorphisms. Studies are
required to associate this mechanism with LBP, no stud-
ies were found.

SCFAs and tryptophan, the precursor to serotonin, are
two bioactive metabolites produced indirectly by the gut
microbiome as byproducts of cellular metabolism [45].
Bacterial metabolites associated with autism include
serotonin and SCFAs. Tryptophan, one of the essential
amino acids, is the precursor of the neuroinhibitor ser-
otonin. Almost 90.0% of serotonin is produced by tryp-
tophan, which is synthesized by the gut microbiota [46].
Given this contribution of the gut microbiota to seroto-
nin production, overgrowth of certain types of bacteria
can lead to an overproduction of serotonin in the gut and
excessive consumption of tryptophan. This could poten-
tially increase local gut serotonergic effects, leading to
the mood and cognitive impairments seen in autism [46,
47]. Serotonin is produced by some strain of Lactobacil-
lus, Streptococcus and Lactococcus. Increased serotonin



Agaglindiiz et al. Journal of Translational Medicine (2022) 20:460

synthesis caused by the microbiota could deplete tryp-
tophan, contributing to the hyperserotonemia seen in
autism [48]. The microbial strain that occurs more more
commonly in children with autism are propionate pro-
ducers for instance Bacteroidetes, Clostridia, and Desul-
fovibrio strain [33, 35, 38]. SCFAs can have neurotoxic
effects when they reach the brain, and it is stated that
propionate, in particular, can cause autism-like behav-
ior in animal models [49]. The microbiome produces
butyrate, which helps to maintain the integrity of the
intestinal epithelium and create T-regulatory (Treg) cells
[50]. By limiting the body’s ability to regulate the immune
system, changes in SCFA levels can increase proinflam-
matory chemicals entering the systemic circulation and
exacerbate neuroinflammation. By affecting the perme-
ability of the intestinal epithelial barrier and the blood-
brain barrier, a dysbiotic gut microbiome can cause
systemic and CNS inflammation [51, 52].

Afferent connections directly connect the gut wall to
certain brainstem nuclei that can be activated by changes
in microbiome composition, and efferent connections
connect sympathetic glutamatergic neurons in the CNS
to the gut are found in the vagus nerve. This, in turn, may
regulate gastrointestinal function and thus microbiome
composition [53]. The gut microbiome can have tangible,
far-reaching effects on neurological function because of
these connections. Autism is linked to these pathways.
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Dysfunction of the HPA, especially autonomic dysregula-
tion, including cortisol dysregulation and reduced vagal
tone, has been linked to autism [54]. ANS function has
been associated with key features of autism deficits in
social behavior, language skills, and cognitive delay [55].
Figure 1 presents several explanations for the association
between the microbiome, gut-brain axis, and autism.
Eliminating the imbalance in the microbiota-brain axis
is seen as a potential target in the treatment of autism
[23, 57]. It is thought that LBPs may be effective on
autism symptoms through the intestinal microbiota. To
better understand the effects of LBPs, a recent study on
animals with autism assessed changes in ASD-related
behaviours, gut microbiota, and systemic and cellular
metabolism. The study used the Lacticaseibacillus rham-
nosus HA-114 and Liglactobacillus salivarius HA-118,
which were formerly included under the Lactobacil-
lus genus. Through social contact, the diversity of gut
microbes, and the constructive manipulation of neuroac-
tive signalling molecules along the microbiota-gut-brain
axis, this study established the psychobiotic potential of
L. rhamnosus HA-114. Although L. salivarius HA 118
had a beneficial impact on social behaviour, it had no
impact on gut microbiota and neuroactive metabolites
[58]. In a different animal study, it was shown that treat-
ing mice with L. reuteri reduced repetitive behaviour in
both male and female Shank3 KO mice and attenuated
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antisocial behaviour, especially in the males. Additionally,
it has been demonstrated that L. reuteri therapy alters the
protein and gene expression levels of GABA receptors
in various parts of the brain [59]. This result is consist-
ent with previous study showing a relationship between
Lactobacillus, autism-related behaviors and GABAergic
function [60].

Some recent studies on this subject in humans are
given in detail in Table 2. The bacteria strain, Lactoba-
cillus Acidophilus, Lacticaseibacillus rhamnosus, Lac-
tiplantibacillus  Plantarum, Lacticaseibacillus casei,
Lactobacillus delbrueckii subsp. bulgaricus, Bifidobacte-
ria longum, Bifidobacterium infantis and Bifidobacterium
breve used in the studies are very diverse [61-64]. Studies
using a capsule containing 8 strains of live bacteria [49,
51] and using Lactobacillus Acidophilus, Lacticaseiba-
cillus rhamnosus and Bifidobacteria longum [50] gener-
ally showed improvement in gastrointestinal symptoms
compared to the control group. Autism symptoms were
assessed using a variety of scales in the research, and
autism symptoms definitely improved, but because sev-
eral probiotics were given, it is unclear which probiotic
had the greatest effect [61, 63, 64]. The fact that Santoc-
chi was evaluated in proinflammatory cytokines, unlike
the others, although no significant changes are observed
[51], it is important for understanding the metabolism,
more studies are needed on this subject. The high pro-
portion of males in the samples of the given studies is
consistent with the higher incidence of the disease in
males [48—-51]. Most of the studies on autism in Table 2
are randomized controlled studies that yield the most
scientifically valuable results according to the scientific
evidence pyramid [48, 49, 51]. The fact that the dura-
tion of use of LBPs was different in the studies examined,
except for one study [49]. Except for two studies (which
are microbiota changes [49, 50]), it was not specified how
long the observed positive outcome persisted. The food
consumption of individuals, which is an important factor
in the composition of the microbiota, was not included in
the studies examined. It can be a guide for future studies.
There is no standardization between studies on gastroin-
testinal symptoms and autism severity assessment scales,
which causes the effects to not be interpreted clearly.
One of the most important shortcomings in understand-
ing metabolism is that the results are not associated with
any metabolic parameter.

Firstly in animals, then in humans, to fully comprehend
the LBPs mechanism of action in ASD, more study is
required on the effects of specific probiotic treatment on
immunological responses, brain activity and metabolism.

Considering that autism arises due to the adverse inter-
actions of the gut, brain, and immune system, evaluation
of neurotransmitters, bioactive bacterial metabolites and

Page 5 of 26

inflammatory markers as well as gastrointestinal symp-
toms and autism severity in future randomized con-
trolled clinical trials with live biotherapeutic products,
will contribute to both understanding the metabolism
in humans with clearer evidence and understanding the
effectiveness of the supplement used. Obtaining clearer
and more consistent results from studies will make it
clear whether the use of LBPs is effective. This will pave
the way for the disease-specific use of these new genera-
tion products.

Alzheimer’s disease

The most prevalent form of dementia, Alzheimer’s
disease is a progressive neurodegenerative condition
marked by the accumulation of amyloid peptides (Ap)
in the brain [87]. According to the data of the Alzhei-
mer’s Association, it was stated that 6.2 million Ameri-
cans were living with Alzheimer’s dementia in the USA
in 2021 and this number was estimated to be 12.7 million
in 2050 [88]. The World Alzheimer’s Disease 2021 report
estimates that 55 million individuals worldwide already
suffer from dementia, and that figure will rise to 78 mil-
lion by the year 2030 [89].

Alzheimer’s disease is characterized by the buildup of
amyloid in the brain. AP peptides are synthesized from
B-amyloid precursor proteins (APP). With the help of
the B-secretase (BACE1L) and y-secretase complex, APP
switches to the amyloidogenic route, whereas a-secretase
is involved in the creation of the non-amyloidogenic
pathway.

While AP accumulates in the extracellular, neutrophil
clumps are formed in the intracellular [87, 90, 91]. Alzhei-
mer’s disease risk factors can be listed as age and gender,
head injuries, cardiovascular diseases, lifestyle, envi-
ronmental factors, diet, infection, genetic factors, obe-
sity and other diseases such as diabetes [92]. Oxidative
stress has an impact on how Alzheimer’s disease devel-
ops. In case of increased oxidative stress, mitorchondial
dysfunction, AP aggregation, disruption of membranes,
molecular oxidation, hyperphosphorylation of tau pro-
tein (microtubule-associated protein) may occur. In
addition, an increase in reactive oxygen strain is associ-
ated with an increase in the oxidation of DNA, proteins,
and lipids [93, 94]. In addition, the disease was associ-
ated with an increase in inflammation and inflammatory
cytokines. Increase in inflammatory cytokines may cause
increased AP aggregation and tau phosphorylation and
this can cause neurotoxicity and neurodegeneration as a
result of neuroinflammation [95-97]. The renin-angio-
tensin system is one of the risk factors for Alzheimer’s. In
the cortical and hippocampal regions of Alzheimer’s dis-
ease versus non- Alzheimer’s disease brains, AT1 recep-
tor expression increased in the hippocampus, whereas
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AT?2 receptor expression remained essentially unaltered.
In Alzheimer’s disease brains, there were small decreases
in ACE-1 protein levels in the cortex and hippocampus,
along with slight increases in ACE-2 levels in the cortex
[98]. In a meta analysis study containing 15 studies use
of angiotensin II receptor blockers (ARBS) significantly
decreased the risk of Alzheimer’s disease and other forms
of dementia [99]. AT1 receptor activation is linked to an
increase in oxidative stress, anxiety and stress. Angioten-
sin (1-7), which consists of angiotensin 1 and 2, has been
connected to the MAS (AT7) receptor and shows effects
such as antioxidant, antiinflammatory, neurogenesis. At
the same time, The muscularis mucosa, propria, small
intestinal brush border, microvascular endothelium, and
vascular smooth muscle cells are all areas of the gut that
include Angiotensin (1-7) axis components [100, 101].
In a study Angiotensin (1-7) values and white matter
hypointensities volumes were positively and significantly
correlated in Alzheimer’s disease patients, and Ang-(1-7)
levels in plasma were significantly lower in Alzheimer’s
disease patients than in controls [102].

In addition to all these factors, dysbiosis in the micro-
biota is also associated with Alzheimer’s Disease. Intes-
tinal bacterial dysbiosis has been shown to be associated
with altered intestinal permeability, systemic activation
of the immune system, production and accumulation
of bacterial AP fibrils in the brain, and increased neu-
roinflammation that contribute to Alzheimer’s disease
[103]. In a related study, it was found that the micro-
bial diversity decreased, and its composition changed in
people with Alzheimer’s Disease. It’s been established
that Bifidobacterium and Firmicutes levels decrease and
Bacteroidetes increase in the microbiome of individuals
with Alzheimer’s disease [104]. Bacteroides (enterotype
I) strain have also been shown to be decreased in indi-
viduals with dementia [105]. In another study, it was
shown that Lactobacillus, Dorea, Bifidobacterium, Strep-
tococcus, Blautia and Escherichia strain increased and
Alistipes, Parabacteroides, Bacteroides, Sutterella and
Paraprevotella decreased in feces in Alzheimer’s patients.
Escherichia and Lactobacillus strain were increased and
Bacteroides decreased in general in people with Alz-
heimer’s and moderate cognitive impairment [106]. In
addition, increased levels of LPS and proinflammatory
cytokines associated with dysbiosis are associated with
amyloid deposition [107]. It’s been demonstrated that
fecal SCFAs decrease, blood brain barrier function is
impaired, and proinflammatory cytokines such as IL-1f,
IL-6 and TNF-a increase in cognitive impairment [108].

A variety of factors, including dysbiosis, altered gut-
brain axis, and changes in the microbiota, are linked
to Alzheimer’s disease. The state of dysbiosis generally
causes an increase in intestinal permeability, Toll-like
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receptor (TLR) cell activation, bacterial amyloid forma-
tion, and the emergence of bacterial metabolites. This
may result in weakening of the gut-brain barrier, pro-
duction of inflammatory markers, and AP formation by
gut bacteria [109]. The gut microbiota is a significant
source of amyloid. In particular, amyloid is produced by
Escherichia coli and helps bacterial cells bind together
by forming a biofilm and resist destruction by physical
or immune factors. Although bacterial amyloids differ
from central nervous system amyloids in their primary
structure, they share similarities in their tertiary struc-
ture. The change in its amount can also affect AP in the
brain as a result of the change in the immune response,
trigger the inflammatory response and increase the
aggregation of other misfolded proteins such as
a-synuclein [110, 111]. Gender is one of the factors
affecting microbiota in Alzheimer’s disease. In a study
conducted in female and male wildtype (WT) and Tg
mice, differences in behavioral and cognitive perfor-
mances and short-chain fatty acids were observed
between genders. When compared to WT-M, Tg-F,
and Tg-M mice, butyrate concentration was higher in
WT-F mice. Butyrate levels showed a positive correla-
tion with working memory and object recognition, with
WT-F mice having the highest values and Tg-F mice
having the lowest. Differences in fecal microbiota com-
position were also found between different species and
gender [112]. In a study in which App™*~6~F male and
female mice were supplemented with VSL#3 probiotics.
In App™-—6~F female mice, probiotic feeding decreased
AP plaque load and enhanced memory [113].

Both bacteria and their by-products (amyloid and LPS)
can enter the brain and cause neuroinflammation. Addi-
tionally, the blood—brain barrier is severely compromised
by bacterial translocation and the release of proinflam-
matory cytokines, which can also set off neuroinflamma-
tory cascades. In the case of Alzheimer’s disease, LPS are
powerful activators of the TLRs and the AGEs receptor,
which sustain chronic inflammation. Systemic inflam-
mation induced by LPSs can affect the formation of A,
increase the permeability of the blood brain barrier, and
decrease the synthesis and secretion of neurotrophic fac-
tors such as N-methyl D-Aspartate (NMDA) and BDNF
receptors. Decreased BDNF levels and NMDA signal; It
is associated with cognitive decline in addition to mood
disorders. Neuroplasticity, which has been shown to
be a key marker of disease, is influenced by both BDNF
and NMDA [110, 114-117]. Proinflammatory cytokines
are known to promote APP expression, upregulate
B-secretase messenger RNA (mRNA), and increase AP
formation in the hippocampus [118]. Studies in rats in
Alzheimer’s disease have shown that LPS increases TLR4,
exacerbates cognitive impairment, and exacerbates



Agaglindiiz et al. Journal of Translational Medicine (2022) 20:460

neuronal apoptosis [119]. IL-1 overexpression led to an
increase in tau phosphorylation. [120].

Alterations in the tryptophan-kynurenine metabolism
have been linked to yet another connection between
the microbiota and Alzheimer’s disease. In this path-
way, there are 4 main metabolites: quinolinic acid (QA),
3-hydroxykynurenine (3-HK), kynurenic acid and pico-
linic acid. In case of changes in the ratios of these metab-
olites, 3-HK and QA metabolites may become neurotoxic
and cause microglia activation and cell death. Particu-
larly, A group of essential tryptophan-metabolizing
enzymes in the kynurenine pathway called indoleamine
2,3-dioxygenase 1 (IDO-1), is stimulated by the proin-
flammatory cytokines IFN-y and TNF-a and has been
found to settle in similar sites with AP plaques. The
kynurenic acid and picolinic acid obtained in this path-
way have neuroprotective effects [115, 121].

The possibility that bile acids play a role in Alzheimer’s
disease is another mechanism demonstrating the connec-
tion between the microbiota and the disease. Bile acids
are converted to secondary bile acids in the intestines.
It has been suggested that the reduction in cognitive
function may be partly due to the cytotoxic properties
of deoxycholic acid, which can disrupt the blood brain
barrier and penetrate brain tissue [115]. In addition,
the synthesis of neurotransmitters such as dopamine,
noradrenaline, acetylcholine, serotonin, GABA, and his-
tamine take place by the microbiota. In the case of dysbi-
osis, a decrease in acetylcholine, GABA, serotonin levels,
BDNE, neurogenesis and neuronal growth may occur.
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Increased nitric oxide levels increase oxidative stress
[111, 122]. Figure 2 summarizes the relationship between
dysbiosis in the microbiota and Alzheimer’s disease.

It has been emphasized that probiotic/prebiotic sup-
plementation, depending on the changes in the microbi-
ota, may have a positive effect by reducing inflammation
through the rearrangement of the microbiota, improv-
ing cognitive function, and reducing AP and tau proteins
[123]. Human and animal studies on probiotic supple-
mentation in Alzheimer’s disease are given in Table 2 and
Table 3. Lactobacillus and Bifidobacterium bacteria were
generally used in both study types. Probiotics showed
effects on kynurenine pathway, BDNF level, microbiota
composition, inflammation, oxidative stress, cognitive
performance, AP plaques, SCFAs levels [65-67, 72-75,
77,78, 124]. Although the effect of probiotic supplemen-
tation in Alzheimer’s disease on renin angiotensin system
is not fully evaluated, Angiotensin (1-7)-expressing pro-
biotic bacteria Lactobacillus paracasei (LP) raised serum
serotonin and the neuroprotective biomarker 2-picolinic
acid, kynurenine aminotransferase II mRNA expression,
angiotensin (1-7) and reduced neuro-inflammatory gene
expression in the pre-frontal cortex and serum angio-
tensin II levels [125, 126]. In another study conducted in
obese mice, orally Bifidobacterium longum supplementa-
tion increased in Mas receptor expression and angioten-
sin converting enzyme 2 (ACE2) levels [127].

Most of the recent studies on this disease in the accu-
mulated literature are animal studies, and studies on

[Memory l

Fig. 2 Possible effects of dysbiosis in the microbiota in Alzheimer’s disease
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humans are more limited. Therefore, studies on humans
are needed.

Parkinson’s disease

Parkinson’s disease is a common neurodegenerative con-
dition marked by diminished motor abilities brought
on by dopaminergic nigrostriatal system dysfunction
[128]. The disorder is brought on by the selective death
of dopaminergic neurons in the substantia nigra, which
lowers the levels of the neurotransmitter in the striatum
and may result in abnormal motor control. Bradykinesia,
resting tremor, rigidity, postural instability, and muscle
tone and are all motor symptoms. In addition, a few non-
motor symptoms such as sleep disturbances, loss of smell,
dementia, psychosis, fatigue, pain anxiety, depression,
hypophonia, dysphagia, and autonomic dysfunctions may
be observed in Parkinson’s patients. Parkinson’s patients
may also experience a number of non-motor symptoms,
including sleep disturbances, loss of smell, dementia,
psychosis, fatigue, pain anxiety, depression, hypophonia,
dysphagia, and autonomic dysfunctions [129, 130].

Parkinson’s disease has a multifactorial etiology, possi-
bly resulting from the combined effects of environmen-
tal and genetic factors. Toxic chemical exposure, head
injury, environmental factors, genetic and epigenetic risk
factors, and aging are the main factors associated with
Parkinson’s [131, 132]. Depending on these factors, fac-
tors such as a-synuclein misfolding and accumulation,
oxidative stress state, decreased mitochondrial com-
plex 1 activity, mitochondrial damage, abnormalities in
adaptive and innate immune response, proinflammatory
cytokines and inflammatory cell activation may affect the
pathogenesis of Parkinson’s disease [131]. At the same
time, the renin angiotensin system is associated with Par-
kinson’s disease. Angiotensin II is a pro-inflammatory
peptide that can activate the NADPH-dependent oxi-
dase complex, causing the formation of ROS, which may
lead to the death of dopaminergic cells [133]. AT 1 and
AT 2 receptors were associated with dopaminergic sys-
tem [134]. Angiotensin converting enzyme activity and
Angiotensin II levels were elevated by dopamin degener-
ation. Treatment with AT1 antagonists in rats decreased
the loss of dopaminergic cells and microglial activation
brought on by 6-OHDA [135]. Inhibited angiotensin II
AT1 receptors led to increased D1 receptor activation,
decreased in the neurotoxin-induced levels of lipid per-
oxidation and protein oxidation, as well as the death of
dopaminergic neurons [136, 137].

Additionally to these elements, it has been revealed
that the gut-brain axis may be effective in the patho-
genesis of Parkinson’s Disease. It has been shown
that there is a change in the microbiota of Parkinson’s
patients. In a meta-analysis study, it was observed that

Page 19 of 26

Akkermansiaceae and Catabacter levels increased, Rose-
buria, Faecalibacterium and Lachnospiraceae ND3007
levels decreased in Parkinson’s patients [138]. Studies
have shown changes in many bacterial strains in the case
of Parkinson’s disease, and their levels have increased or
decreased (Table 4). These individuals also experienced
alterations in their microbiota, as well as carbohydrate
fermentation, a reduction in butyrate synthesis ability,
proteolytic fermentation, and the development of dan-
gerous amino acid metabolites such p-cresol and pheny-
lacetylglutamine [139-145]. Changes in the microbiota
have also been associated with symptoms. Bacteroides
levels were increased more in Parkinson patients without
tremor than in patients with tremor. Microbiota change
has been associated with increased levels of IFN-y and
TNF-a. Increase in Bacteroides level was associated with
TNE-q, increase in Verrucomicrobia strain was associated
with IFN-y [142]. It has been found that fecal branched-
chain amino acid levels and aromatic amino acid con-
centrations are decreased in individuals with Parkinson’s
disease [145]. Considering the changes in the microbiota,
studies have shown that SCFAs (acetate, butyrate, propi-
onate) levels decrease in Parkinson’s patients. In particu-
lar, it has been demonstrated that there is a decrease in
propionate levels [146—148].

Metabolites, neurotransmitters, vitamins, hormones,
pathogenic peptides, cytokines, and neurotoxins secreted
as a result of microbiota can be associated with Parkin-
son’s Disease. Intestinal bacteria can synthesize various
neurotransmitters such as GABA, 5-hydroxytryptamine
(5-HT), dopamine or SCFAs [149]. Increased intestinal
permeability and dysbiosis in the microbiota cause an
increase in systemic inflammation (CRP, IL-6, TNF-a,
IL-1P), changes in SCFAs, decrease in neurotransmit-
ters such as GABA, and change in T-reg cell expression
[150]. Through the gut-brain axis, intestinal dysbiosis can
result in an increase in T helper cells, proinflammatory
cytokines, and LPS, resulting in increased intestine and
blood-brain barrier permeability [151]. In case of disrup-
tion of the crostalk in the intestinal-brain axis, abnormal
a-synuclein fibrils can accumulate in the ENS, glial cell
dysfunction, and inflammation in the ENS can occur.
Increased penetration of microbiota-generated sub-
stances across the blood—brain barrier is associated with
an increase in Parkinson’s disease symptoms through the
death of dopaminergic neurons, neuroinflammation, and
an increase in a-synuclein [152].

Synucleinopathy involving the accumulation of insolu-
ble polymers of a-synuclein with Lewy bodies proteins
has been found in Parkinson’s patients. Lewy bodies
reduce neuronal growth and cause neurodegeneration
[149]. Alterations in the gut microbiota result in aber-
rant products that have toxic effects on the peripheral gut
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Table 4 Potential change in microbiota composition in Parkinson’s condition

Increments Descendants Reference

Verrucomicrobiaceae, Bifidobacteriaceae, Bifidobacterium, Streptococcaceae, Desulfohalo-  Bacteroidaceae, Lachnospiraceae, Brevibac- [139]

biaceae, Akkermansia, Escherichia, Prosthecobacter, Streptococcus, Clostridium, Serratia, teriaceae, Sphingobacteriaceae, Bacteroides,

Enterobacter Brevibacterium,Blautia, Odoribacter, Lachnospira,
Butyrivibrio, Roseburia, Pseudobutyrivibrio, Doli-
chospermum, Coprococcus,

Christensenellaceae, Desulfovibrionaceae, Bifidobacterium, Bilophila, Akkermansia Lachnospiraceae, Faecalibacterium [140]

Christensenella, Catabacter, Lactobacillus, Oscillospira, Bifidobacterium, Christensenella Dorea, Bacteroides, Prevotella, Faecalibacterium, [141]

minuta, Catabacter hongkongensis, Lactobacillus mucosae, Ruminococcus bromii, and Bacteroides massiliensis, Stoquefichus massiliensis,

Papillibacter cinnamivorans Bacteroides coprocola, Dorea longicatena, Copro-
coccus eutactus, Ruminococcus callidus, Blautia
glucerasea, Prevotella copri, Bacteroides dorei,

Bacteroides plebeus

Verrucomicrobia, Mucispirillum, Porphyromonas, Lactobacillus, Parabacteroides Prevotella [142]

Clostridium XVIII, Clostridium 1V, Sphingomonas, Butyricicoccus Holdemania, Aquabacte- Lactobacillus, Sediminibacterium [143]

rium, Anaerotruncus

Lactobacillaceae Lactobacillus Lachnospiraceae Blautia [144]

Lachnospiraceae Lachnospiraceae Fusica-

NK4A 136, Bifidobacteriaceae Bifidobacterium, Desulfovibrionaceae tenibacter

Bilophila, Lachnospiraceae Tyzzerella

Rikenellaceae_RC9_gut_group, Bifidobacterium, Parabacteroides, Actinobacteria, Faecalibacterium [145]

Bacteroidetes

ganglia and lead to an excessive synthesis of a-synuclein.
a-synuclein uses the medulla oblongata, vagus nerve, and
brain stem to reach the cortex, thereby affecting damage
to neurons in the central system [153].

A decrease in SCFAs may occur in patients with Par-
kinson’s disease [146—148]. SCFAs are effective in
preventing dopaminergic neuronal loss, reducing neu-
roinflammation, regulating microglia function, preserv-
ing blood-brain barrier function, regulating the growth,
differentiation and survival of synapses, regulating neu-
rotropic factor secretion (BDNF, GDNF glial-derived
neurotropic factor), maintaining the intestinal barrier by
down-regulating TLR expression, decreasing proinflam-
matory cytokines, increasing anti-inflammatory cytokine
production and decreasing oxidative stress [154]. It has
been found that propionate supplementation regulates
zonula occludens-1 and occludin and has a positive
effect on motor behavior and intestinal epithelial bar-
rier through Akt signaling pathway [147]. In addition,
it was stated that as a result of FMT, microbiota dys-
biosis decreased, fecal SCFAs increased, physical disor-
ders were alleviated, and dopamine and serotonin levels
increased in Parkinson’s patients [155].

For all these reasons, it has been emphasized that
probiotic supplementation may have positive effects in
Parkinson’s patients. It has been stated that increasing
the protection of dopaminergic neurons, reducing pain,
inflammation, behavioral changes and oxidative stress
can be achieved by reducing gastrointestinal motility,

pathogenic bacteria and gastrointestinal abnormalities
[156].

In Fig. 3, the relationship between dysbiosis in the
microbiota and Parkinson’s disease is summarized.

Human and animal studies examining the effect of
probiotic supplementation for Parkinson’s disease are
listed in Table 2 and Table 3. Generally, Lactobacillus and
Bifidobacterium strain bacteria were used in both study
types. Probiotic supplementation showed effects on
motor activity, BDNF level, microbiota dysbiosis, synap-
tic dysfunction, memory, inflammation, oxidative stress,
cognitive performance, dopaminergic cell death, SCFAs
levels. Figure 4 summarizes the general effects of pro-
biotic supplementation in Parkinson’s patients [69-71,
80-86]. Although there are animal studies to elucidate
the mechanisms in Parkinson’s disease, human studies on
probiotic supplementation in recent years are limited. In
order to assess the impact of supplementation in humans,
it is crucial to expand the number of research.

Future conflicts and safety

LBPs often do not exert their biological effects by reach-
ing distant organs, tissues, or receptors or by acting
directly on a defined target. Instead, they have an impact
on the host microbiota through suppressing pathogens
[157], generating active molecules/metabolites [65, 74,
158, 159], by modulating mucosal immune system activ-
ity [160, 161] or by modulating nervous system activity
[77, 79, 158, 162]. These effects could all or part of them
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happen simultaneously, mediating various sorts of signals
and activating distinct physiological pathways within the
host. There are several interconnected systems in which
LBPs can potentially alter brain function directly and/or
indirectly (Fig. 5). These include specifically the endo-
crine [163], parasympathetic autonomic (vagus nerve)
[164] and immune system [165]. All these situations can

also affect cognitive and behavioral processes, which can
cause behavioral changes [41].

One of the most important points is to demonstrate
the quality, efficacy and safety of LBPs due to the prod-
uct’s vivid properties and often multifactorial mode of
action. Thus, the global profit-risk ratio can be evalu-
ated by determining the features and risks of the product
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components and strains, as well as the characteristics and
risks of the target population [12, 166].

The risks to be considered in the LBP risk analysis
regarding the patient are the risks associated with the
ingestion of the live product. These include nature of
the target, mode of action, dosage, formulation, route
of administration, biodistribution in the intended popu-
lation, pathophysiology, patient’s characteristics (age,
gender, genetics, ethnicity, microbiome composition,
environment, lifestyle, diet), special populations associ-
ated risks (pregnant, premature babies, children, elderly,
critically illness), patient’s concomitant medication, risk
for entourage. Non-clinical toxic/safety studies that take
into account the risks associated with the targeted popu-
lation (in vitro, ex vivo, methods/models developed with
appropriate animal models) and then first in human/early
clinical trials are required. If one or more of the risks
revealed by the risk analysis is affected by dosage, toxic-
ity studies should include multiple dosages to provide
and document information for human translation. Con-
tingency plan should be developed the event of serious
negative effects on the target population [166].

Conclusions

Recent advances in human and animal studies revealed
that the gut microbiome and especially dysbiosis can
cause mood disorders, neurodevelopmental and neu-
rodegenerative conditions by communicating the gut-
brain axis to communicate with the brain. LBPs, a recent
emerging class of therapeutics based on probiotics and
live bacterias, are promising for preventing and treat-
ing these gut brain axis related conditions and heath

problems. Although there is increasing evidence to sug-
gest that LBPs have a stabilizing effect on the gut-brain
axis [65, 74, 77, 79, 157-162] results are not consistent
because of lack of control for certain variables used in
studies, such as strain, dose, length of treatment, placebo
control, sample size, mixed male/female patient popula-
tion, and other study design issues, are major barriers in
this regard.

Disease-specific probiotic strains need to be identi-
fied. The duration of probiotic dose administration and
the monitoring of the results of probiotic use should
also be taken into account at the same time. The quality
of the studies will be improved by integrating informa-
tion on food consumption of people whose effects on the
gut microbiota are known (for self-human studies), in
addition to the probiotics employed in the experiments.
Gender should also be emphasized for each condition
in order to determine whether it affects the disease or
not. Future research can remark on the usage of probi-
otics specific to the disease and gender in this direction.
Additionally, it’s believed that standardizing the scales
used in research to assess disease and symptom indica-
tors will be helpful in assessing the impact of probiotics
on the disease. Finally, comparing the study’s findings to
those from the biological samples will aid in understand-
ing how probiotics affect disease and metabolism.

Regarding safety, the general opinion is that commonly
used strains such as Lactobacillus and Bifidobacteria
are safe. More thorough safety and efficacy studies will
be required as the field develops and a greater range of
possibilities when novel therapies begin to be examined.
There is a need for more multiple and specific target
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studies to be carried out considering all risks to elucidate
the mechanism and strain specificity. The publication of
subject-specific guidelines and public—private collabora-
tion and extensive partnerships are required first to iden-
tify and develop LBPs that can be successful as specific
therapeutics for safe and specific modulation of the gut
microbiota-brain axis.
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