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Abstract 

Probiotics have been defined as “living microorganisms that create health benefits in the host when taken in sufficient 
amounts. Recent developments in the understanding of the relationship between the microbiom and its host have 
shown evidence about the promising potential of probiotics to improve certain health problems. However, today, 
there are some confusions about traditional and new generation foods containing probiotics, naming and classifica-
tions of them in scientific studies and also their marketing. To clarify this confusion, the Food and Drug Administration 
(FDA) declared that it has made a new category definition called "live biotherapeutic products" (LBPs). Accordingly, 
the FDA has designated LBPs as “a biological product that: i)contains live organisms, such as bacteria; ii)is applicable to the 
prevention, treatment, or cure of a disease/condition of human beings; and iii) is not a vaccine”. The accumulated literature 
focused on LBPs to determine effective strains in health and disease, and often focused on obesity, diabetes, and 
certain diseases like inflammatory bowel disease (IBD).However, microbiome also play an important role in the patho-
genesis of diseases that age day by day in the modern world via gut-brain axis. Herein, we discuss the novel roles of 
LBPs in some gut-brain axis related conditions in the light of recent studies. This article may be of interest to a broad 
readership including those interested in probiotics as LBPs, their health effects and safety, also gut-brain axis.
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Introduction
One of the most popular topics and research areas of 
recent years is the microbiome, microbiome modulation 
and factors that modulate the microbiome, especially 
nutrition. In this regard, the technological develop-
ments created by the 4th Industrial Bio-Revolution and 

especially the technological developments in the field of 
multiomics, such as The Human Genome Project (HGP), 
National Institutes of Health (NIH) Human Microbiome 
Project, European Metagenomics of the Human Intesti-
nal Tract (MetaHIT) genome and microbiome projects 
play an important role [1–4] In these projects, microbi-
ome characterization has been made and continues to be 
done with technologies such as 16S rRNA-encoding gene 
(16S) and metagenomic shotgun sequencing in different 
parts of the human body with multiomic technologies [1, 
4].

The aggregate genomes of microorganisms in a spe-
cific habitat are referred to as the microbiome. The 
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microbiome has been thought of as a virtual organ of the 
body for some time [5]. Berg et al. [6] defined the micro-
biome as “It is a characteristic microbial community 
occupying a reasonable well-defined habitat which has 
distinct physiochemical properties” [6]. In addition, unlike 
the microbiome, the microbiota was defined by the same 
researchers from a different perspective like “ It consists 
of the assembly of microorganisms belonging to differ-
ent, while “their theatre of activity” includes microbial 
structures, metabolites, genetic elements, and relic DNA 
embedded in the environmental conditions of the habitat” 
[6].

Determining the structure and functional capability of 
the microbiome in health and disease, as well as the vari-
ables that influence it, is critical [7]. Microbiome-micro-
biota is a very dynamic ecosystem and can be affected 
by many modifiable and unchangeable factors for exam-
ple genetic factors, age, geography, drug treatments [8]. 
Nutrition, which is an important source and modulator 
of biotics, is one of the most important modifiable fac-
tors that manipulate microbial diversity, composition 
and stability, affect the composition of microbiome and 
microbiota, and have the potential for therapeutic use 
depending on some factors [9]. Also antioxidants (vita-
mins, polyphenols etc.) are effective on gut microbiota. It 
has been stated that antioxidants reduce inflammation of 
gut microbiota, affect microbiota composition, intestinal 
mucosal barrier, short -chain fatty acids production and 
effect on the immune system [10, 11].

At this point, probiotics, metabolites of probiotics 
and modulators of probiotics play an important role. 
However, today, there are some confusions about tra-
ditional and new generation foods containing probiot-
ics and some naming of some supplements, their use 
in scientific studies and their marketing [12]. In order 
to resolve this confusion, the Food and Drug Adminis-
tration (FDA) declared that it has made a new category 
definition called "live biotherapeutic products" (LBPs) 
and the European Pharmacopoeia (Ph. Eur.) urgently 
determined the requirements for this new drug category 
[13, 14]. Accordingly, the FDA has designated LBPs as “a 
biological product that: i) contains live organisms, such 
as bacteria; ii) is applicable to the prevention, treatment, 
or cure of a disease or condition of human beings; and 
iii) is not a vaccine” [13]. European Pharmacopoeia (Ph. 
Eur.) defined LBPs as “medicinal products containing live 
micro-organisms such as bacteria or yeasts for human 
use” [14].

Although there is a literature focused on traditional 
probiotics, especially lactic acid bacteria (LAB), to deter-
mine effective strains in disease and health, such studies 
fall short of LBPs and often focus on obesity, diabetes, 
and certain diseases for instance Inflammatory bowel 

disease (IBD) [8]. However, the microbiome and microbi-
ota play a significant role in the ethology of diseases that 
continue to be associated to stress in the modern world 
and age day by day [12]. Because there is a connection 
between the gastrointestinal system and the central nerv-
ous system (CNS). This link, which plays an important 
role in the pathogenesis of related diseases, is mediated 
by inflammatory cytokines, vagus nerve, neurotransmit-
ters, and hypothalamic–pituitary–adrenal axis (HPA) 
[15]. There is growing evidence that LBPs affect the gut-
brain axis, which in turn affects disorders related to the 
axis.

Gut-brain axis related conditions refer to many condi-
tions from psychological disorders such as depression, 
anxiety, stress, bipolar disorder, and schizophrenia to 
neurological problems such as autism, Alzheimer’s and 
Parkinson’s. Current literature continues to present stud-
ies on the relationship between psychological conditions 
and LBPs [16–19]. It is accepted that the gut microbiota 
has a role in regulating psychological health in addition 
to physical health through the gut-brain axis. Besides 
negative changes in the intestinal microbiota may cause 
psychological disorders [20]. As with psychological dis-
orders, the alteration of gut-brain axis interactions has 
been advocated as a potential cause of some neurologi-
cal diseases [21]. In this review article, promising roles, 
mechanisms of action and possible safety issues of LBPs 
in gut-brain axis related neurological conditions are dis-
cussed in the light of current human and animal studies.

Gut–brain axis related neurological conditions
Autism
Autism is defined by social communication and inter-
personal difficulties as well as limited repetitive behavior, 
activities, and interests. Defination of autism, accord-
ing to the 5th Edition of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-5) as a condition that 
occurs with abnormalities in social communication and 
interaction and with repetitive, limited behavioral pat-
terns or activities [22]. According to WHO-2018, approx-
imately one in every 160 kids worldwide has autism. In 
the United States of America (USA), autism affects about 
one out of every 54 children nowadays [23]. Boys are four 
times as likely than girls to have autism [24]. The rea-
son for this situation is not clear, but it is thought to be 
among the possibilities that it is related to estrogen and 
testosterone levels. Disruption of the transsulfuration 
pathway of testosterone [25], neuroprotective property of 
estrogen, and modulation of the gut microbiome [26] are 
suggested as reasons for the prevalence of autism in men.

Currently, there is no definitive treatment routinely 
used for autism. Physical therapy, cognitive educa-
tion and sensory integration are among the treatments 
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applied. According to new research, altering the gut 
microbiome may be a successful treatment for childeren 
with autism. Probiotics, prebiotics, microbiota transfer 
therapy, fecal microbiota transplantation (FMT), and var-
ious dietary treatment methods are gaining importance 
[27].

Causes of autism include genetic and environmental 
factors (for example oxidative stress, parental age, fetal 
infections, and fetal testosterone levels). Nutritional defi-
ciencies due to selective eating behaviors of individuals 
with autism also have a significant influence in autism 
[28, 29]. Gastrointestinal symptoms including constipa-
tion, diarrhea, reflux, vomiting, discomfort, abdominal 
pain, gas, and unusually foul-smelling stools are com-
mon in autism [30]. It is stated that one of the main fac-
tors of gastrointestinal dysfunction in autism is "leaky 
gut syndrome" [27]. The epithelial cells are oblong with 
little paracellular space between them. Antigenic materi-
als taken into the body cause inhibition of some enzymes, 
causing epithelial cells to become "round", which creates 
a significant increase in paracellular space. This situation, 
in which intestinal permeability is increased, may cause 
food-derived peptides to enter the circulation, as well as 
bacterial metabolites. These antigenic materials may trig-
ger immune responses that influence neuronal signalling 
or cause the material to interact directly with the periph-
eral nervous system when they enter the circulation. In 
the pathophysiology of autism, increased intestinal per-
meability is assumed to be the link between the gut and 
the brain. [31]. In addition, it is stated that bacterial tox-
ins and metabolites may cause increased oxidative stress 
and deterioration in detoxification mechanisms in indi-
viduals. [32].

Dysbiosis in the microbiota can be caused directly by 
certain genetic and environmental risk factors. Dysbiosis 
is increasingly being recognized as a feature of autism. 
[23]. The two dominant bacterial strain in the healthy 
human microbiota are the phyla Bacteriodetes and Firmi-
cutes [33]. It was observed that Bacteroidetes and Proteo-
bacteria were higher and Actinobacteria and Firmicutes 
were lower in a group of children with autism [34]. 
Table 1 lists the alterations in the microbiome of people 
with autism.

In the presence of autism, there is a generally less 
diverse microbiota. Dysbiosis is stated to be present 
when autism is diagnosed, but a defined microbial sig-
nature for autism has not been identified. Reasons for 
uncertainty include methodological changes in symptom 
severity, lifestyle, comorbid conditions, medical history, 
and inherent heterogeneity of autism cohorts [34].

Low-grade systemic inflammation, increased intestinal 
permeability, and neuroinflammation are all symptoms of 
dysbiosis. Between the ENS, CNS, ANS, and HPA axis, 

there are complex, bidirectional integrated signalling net-
works that make up the gut-brain axis [40, 41]. The pre-
frontal cortex, hypothalamus, and limbic system among 
other emotional and cognitive brain regions, have been 
demonstrated to link with gastrointestinal function [42]. 
These processes can be influenced indirectly by the gut 
microbiome’s metabolites and inflammatory mediators 
and directly by vagal stimulation. It has been discov-
ered that the renin-angiotensin system has a role in the 
pathogenesis of associated illnesses as well as the modu-
lation of brain function. High levels of oxidative stress, 
apoptotic pathways, and neuroinflammatory diseases are 
brought on by excessive activation of the ACE/Angio-
tensin II/Angiotensin type-1 receptor (AT-1) axis [43]. 
Meanwhile, it has been demonstrated that the patho-
physiology of ASD is functionally related to immune sys-
tem malfunction and an excess of reactive oxygen species 
(ROS) [44].Therefore, possible risk factors for ASD can 
be suggested for ACE gene polymorphisms. Studies are 
required to associate this mechanism with LBP, no stud-
ies were found.

SCFAs and tryptophan, the precursor to serotonin, are 
two bioactive metabolites produced indirectly by the gut 
microbiome as byproducts of cellular metabolism [45]. 
Bacterial metabolites associated with autism include 
serotonin and SCFAs. Tryptophan, one of the essential 
amino acids, is the precursor of the neuroinhibitor ser-
otonin. Almost 90.0% of serotonin is produced by tryp-
tophan, which is synthesized by the gut microbiota [46]. 
Given this contribution of the gut microbiota to seroto-
nin production, overgrowth of certain types of bacteria 
can lead to an overproduction of serotonin in the gut and 
excessive consumption of tryptophan. This could poten-
tially increase local gut serotonergic effects, leading to 
the mood and cognitive impairments seen in autism [46, 
47]. Serotonin is produced by some strain of Lactobacil-
lus, Streptococcus and Lactococcus. Increased serotonin 

Table 1  Change in microbiota composition in autism

Increments Descendants Reference

Bacteroidetes
Bacteroides vulgatus
Desulfovibrio spp.

– [33]

– Prevotella
Coprococcus Veillonellaceae

[34]

Lactobacillus Bifidobacter [35]

– Sutterella spp. [36]

Clostridium histoliticum Clostridium, cluster I and II↓, [37]

Desulfovibrio spp.
Lactobacillus spp

Bacteroides/Firmicutes ratio [38]

Clostridium, boltae,
Clostridium, cluster I and XI

– [39]
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synthesis caused by the microbiota could deplete tryp-
tophan, contributing to the hyperserotonemia seen in 
autism [48]. The microbial strain that occurs more more 
commonly in children with autism are propionate pro-
ducers for instance Bacteroidetes, Clostridia, and Desul-
fovibrio strain [33, 35, 38]. SCFAs can have neurotoxic 
effects when they reach the brain, and it is stated that 
propionate, in particular, can cause autism-like behav-
ior in animal models [49]. The microbiome produces 
butyrate, which helps to maintain the integrity of the 
intestinal epithelium and create T-regulatory (Treg) cells 
[50]. By limiting the body’s ability to regulate the immune 
system, changes in SCFA levels can increase proinflam-
matory chemicals entering the systemic circulation and 
exacerbate neuroinflammation. By affecting the perme-
ability of the intestinal epithelial barrier and the blood–
brain barrier, a dysbiotic gut microbiome can cause 
systemic and CNS inflammation [51, 52].

Afferent connections directly connect the gut wall to 
certain brainstem nuclei that can be activated by changes 
in microbiome composition, and efferent connections 
connect sympathetic glutamatergic neurons in the CNS 
to the gut are found in the vagus nerve. This, in turn, may 
regulate gastrointestinal function and thus microbiome 
composition [53]. The gut microbiome can have tangible, 
far-reaching effects on neurological function because of 
these connections. Autism is linked to these pathways. 

Dysfunction of the HPA, especially autonomic dysregula-
tion, including cortisol dysregulation and reduced vagal 
tone, has been linked to autism [54]. ANS function has 
been associated with key features of autism deficits in 
social behavior, language skills, and cognitive delay [55]. 
Figure 1 presents several explanations for the association 
between the microbiome, gut-brain axis, and autism.

Eliminating the imbalance in the microbiota-brain axis 
is seen as a potential target in the treatment of autism 
[23, 57]. It is thought that LBPs may be effective on 
autism symptoms through the intestinal microbiota. To 
better understand the effects of LBPs, a recent study on 
animals with autism assessed changes in ASD-related 
behaviours, gut microbiota, and systemic and cellular 
metabolism. The study used the Lacticaseibacillus rham-
nosus HA-114 and Liglactobacillus salivarius HA-118, 
which were formerly included under the Lactobacil-
lus genus. Through social contact, the diversity of gut 
microbes, and the constructive manipulation of neuroac-
tive signalling molecules along the microbiota-gut-brain 
axis, this study established the psychobiotic potential of 
L. rhamnosus HA-114. Although L. salivarius HA 118 
had a beneficial impact on social behaviour, it had no 
impact on gut microbiota and neuroactive metabolites 
[58]. In a different animal study, it was shown that treat-
ing mice with L. reuteri reduced repetitive behaviour in 
both male and female Shank3 KO mice and attenuated 

Fig. 1  Relationship between microbiota, gut-brain axis and autism (adapted from references [23] and [56])
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antisocial behaviour, especially in the males. Additionally, 
it has been demonstrated that L. reuteri therapy alters the 
protein and gene expression levels of GABA receptors 
in various parts of the brain [59]. This result is consist-
ent with previous study showing a relationship between 
Lactobacillus, autism-related behaviors and GABAergic 
function [60].

Some recent studies on this subject in humans are 
given in detail in Table  2. The bacteria strain, Lactoba-
cillus Acidophilus, Lacticaseibacillus rhamnosus, Lac-
tiplantibacillus Plantarum, Lacticaseibacillus casei, 
Lactobacillus delbrueckii subsp. bulgaricus, Bifidobacte-
ria longum, Bifidobacterium infantis and Bifidobacterium 
breve used in the studies are very diverse [61–64]. Studies 
using a capsule containing 8 strains of live bacteria [49, 
51] and using Lactobacillus Acidophilus, Lacticaseiba-
cillus rhamnosus and Bifidobacteria longum [50] gener-
ally showed improvement in gastrointestinal symptoms 
compared to the control group. Autism symptoms were 
assessed using a variety of scales in the research, and 
autism symptoms definitely improved, but because sev-
eral probiotics were given, it is unclear which probiotic 
had the greatest effect [61, 63, 64]. The fact that Santoc-
chi was evaluated in proinflammatory cytokines, unlike 
the others, although no significant changes are observed 
[51], it is important for understanding the metabolism, 
more studies are needed on this subject. The high pro-
portion of males in the samples of the given studies is 
consistent with the higher incidence of the disease in 
males [48–51]. Most of the studies on autism in Table 2 
are randomized controlled studies that yield the most 
scientifically valuable results according to the scientific 
evidence pyramid [48, 49, 51]. The fact that the dura-
tion of use of LBPs was different in the studies examined, 
except for one study [49]. Except for two studies (which 
are microbiota changes [49, 50]), it was not specified how 
long the observed positive outcome persisted. The food 
consumption of individuals, which is an important factor 
in the composition of the microbiota, was not included in 
the studies examined. It can be a guide for future studies. 
There is no standardization between studies on gastroin-
testinal symptoms and autism severity assessment scales, 
which causes the effects to not be interpreted clearly. 
One of the most important shortcomings in understand-
ing metabolism is that the results are not associated with 
any metabolic parameter.

Firstly in animals, then in humans, to fully comprehend 
the LBPs mechanism of action in ASD, more study is 
required on the effects of specific probiotic treatment on 
immunological responses, brain activity and metabolism.

Considering that autism arises due to the adverse inter-
actions of the gut, brain, and immune system, evaluation 
of neurotransmitters, bioactive bacterial metabolites and 

inflammatory markers as well as gastrointestinal symp-
toms and autism severity in future randomized con-
trolled clinical trials with live biotherapeutic products, 
will contribute to both understanding the metabolism 
in humans with clearer evidence and understanding the 
effectiveness of the supplement used. Obtaining clearer 
and more consistent results from studies will make it 
clear whether the use of LBPs is effective. This will pave 
the way for the disease-specific use of these new genera-
tion products.

Alzheimer’s disease
The most prevalent form of dementia, Alzheimer’s 
disease is a progressive neurodegenerative condition 
marked by the accumulation of amyloid peptides (Aβ) 
in the brain [87]. According to the data of the Alzhei-
mer’s Association, it was stated that 6.2 million Ameri-
cans were living with Alzheimer’s dementia in the USA 
in 2021 and this number was estimated to be 12.7 million 
in 2050 [88]. The World Alzheimer’s Disease 2021 report 
estimates that 55 million individuals worldwide already 
suffer from dementia, and that figure will rise to 78 mil-
lion by the year 2030 [89].

Alzheimer’s disease is characterized by the buildup of 
amyloid in the brain. Aβ peptides are synthesized from 
β-amyloid precursor proteins (APP). With the help of 
the β-secretase (BACE1) and γ-secretase complex, APP 
switches to the amyloidogenic route, whereas α-secretase 
is involved in the creation of the non-amyloidogenic 
pathway.

While Aβ accumulates in the extracellular, neutrophil 
clumps are formed in the intracellular [87, 90, 91]. Alzhei-
mer’s disease risk factors can be listed as age and gender, 
head injuries, cardiovascular diseases, lifestyle, envi-
ronmental factors, diet, infection, genetic factors, obe-
sity and other diseases such as diabetes [92]. Oxidative 
stress has an impact on how Alzheimer’s disease devel-
ops. In case of increased oxidative stress, mitorchondial 
dysfunction, Aβ aggregation, disruption of membranes, 
molecular oxidation, hyperphosphorylation of tau pro-
tein (microtubule-associated protein) may occur. In 
addition, an increase in reactive oxygen strain is associ-
ated with an increase in the oxidation of DNA, proteins, 
and lipids [93, 94]. In addition, the disease was associ-
ated with an increase in inflammation and inflammatory 
cytokines. Increase in inflammatory cytokines may cause 
increased Aβ aggregation and tau phosphorylation and 
this can cause neurotoxicity and neurodegeneration as a 
result of neuroinflammation [95–97]. The renin-angio-
tensin system is one of the risk factors for Alzheimer’s. In 
the cortical and hippocampal regions of Alzheimer’s dis-
ease versus non- Alzheimer’s disease brains, AT1 recep-
tor expression increased in the hippocampus, whereas 
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AT2 receptor expression remained essentially unaltered. 
In Alzheimer’s disease brains, there were small decreases 
in ACE-1 protein levels in the cortex and hippocampus, 
along with slight increases in ACE-2 levels in the cortex 
[98]. In a meta analysis study containing 15 studies use 
of angiotensin II receptor blockers (ARBS) significantly 
decreased the risk of Alzheimer’s disease and other forms 
of dementia [99]. AT1 receptor activation is linked to an 
increase in oxidative stress, anxiety and stress. Angioten-
sin (1–7), which consists of angiotensin 1 and 2, has been 
connected to the MAS (AT7) receptor and shows effects 
such as antioxidant, antiinflammatory, neurogenesis. At 
the same time, The muscularis mucosa, propria, small 
intestinal brush border, microvascular endothelium, and 
vascular smooth muscle cells are all areas of the gut that 
include Angiotensin (1–7) axis components [100, 101]. 
In a study Angiotensin (1–7) values and white matter 
hypointensities volumes were positively and significantly 
correlated in Alzheimer’s disease patients, and Ang-(1–7) 
levels in plasma were significantly lower in Alzheimer’s 
disease patients than in controls [102].

In addition to all these factors, dysbiosis in the micro-
biota is also associated with Alzheimer’s Disease. Intes-
tinal bacterial dysbiosis has been shown to be associated 
with altered intestinal permeability, systemic activation 
of the immune system, production and accumulation 
of bacterial Aβ fibrils in the brain, and increased neu-
roinflammation that contribute to Alzheimer’s disease 
[103]. In a related study, it was found that the micro-
bial diversity decreased, and its composition changed in 
people with Alzheimer’s Disease. It’s been established 
that Bifidobacterium and Firmicutes levels decrease and 
Bacteroidetes increase in the microbiome of individuals 
with Alzheimer’s disease [104]. Bacteroides (enterotype 
I) strain have also been shown to be decreased in indi-
viduals with dementia [105]. In another study, it was 
shown that Lactobacillus, Dorea, Bifidobacterium, Strep-
tococcus, Blautia and Escherichia strain increased and 
Alistipes, Parabacteroides, Bacteroides, Sutterella and 
Paraprevotella decreased in feces in Alzheimer’s patients. 
Escherichia and Lactobacillus strain were increased and 
Bacteroides decreased in general in people with Alz-
heimer’s and moderate cognitive impairment [106]. In 
addition, increased levels of LPS and proinflammatory 
cytokines associated with dysbiosis are associated with 
amyloid deposition [107]. It’s been demonstrated that 
fecal SCFAs decrease, blood brain barrier function is 
impaired, and proinflammatory cytokines such as IL-1β, 
IL-6 and TNF-α increase in cognitive impairment [108].

A variety of factors, including dysbiosis, altered gut-
brain axis, and changes in the microbiota, are linked 
to Alzheimer’s disease. The state of dysbiosis generally 
causes an increase in intestinal permeability, Toll-like 

receptor (TLR) cell activation, bacterial amyloid forma-
tion, and the emergence of bacterial metabolites. This 
may result in weakening of the gut-brain barrier, pro-
duction of inflammatory markers, and Aβ formation by 
gut bacteria [109]. The gut microbiota is a significant 
source of amyloid. In particular, amyloid is produced by 
Escherichia coli and helps bacterial cells bind together 
by forming a biofilm and resist destruction by physical 
or immune factors. Although bacterial amyloids differ 
from central nervous system amyloids in their primary 
structure, they share similarities in their tertiary struc-
ture. The change in its amount can also affect Aβ in the 
brain as a result of the change in the immune response, 
trigger the inflammatory response and increase the 
aggregation of other misfolded proteins such as 
α-synuclein [110, 111]. Gender is one of the factors 
affecting microbiota in Alzheimer’s disease. In a study 
conducted in female and male wildtype (WT) and Tg 
mice, differences in behavioral and cognitive perfor-
mances and short-chain fatty acids were observed 
between genders. When compared to WT-M, Tg-F, 
and Tg-M mice, butyrate concentration was higher in 
WT-F mice. Butyrate levels showed a positive correla-
tion with working memory and object recognition, with 
WT-F mice having the highest values and Tg-F mice 
having the lowest. Differences in fecal microbiota com-
position were also found between different species and 
gender [112]. In a study in which AppNL−G−F male and 
female mice were supplemented with VSL#3 probiotics. 
In AppNL−G−F female mice, probiotic feeding decreased 
Aβ plaque load and enhanced memory [113].

Both bacteria and their by-products (amyloid and LPS) 
can enter the brain and cause neuroinflammation. Addi-
tionally, the blood–brain barrier is severely compromised 
by bacterial translocation and the release of proinflam-
matory cytokines, which can also set off neuroinflamma-
tory cascades. In the case of Alzheimer’s disease, LPS are 
powerful activators of the TLRs and the AGEs receptor, 
which sustain chronic inflammation. Systemic inflam-
mation induced by LPSs can affect the formation of Aβ, 
increase the permeability of the blood brain barrier, and 
decrease the synthesis and secretion of neurotrophic fac-
tors such as N-methyl D-Aspartate (NMDA) and BDNF 
receptors. Decreased BDNF levels and NMDA signal; It 
is associated with cognitive decline in addition to mood 
disorders. Neuroplasticity, which has been shown to 
be a key marker of disease, is influenced by both BDNF 
and NMDA [110, 114–117]. Proinflammatory cytokines 
are known to promote APP expression, upregulate 
β-secretase messenger RNA (mRNA), and increase Aβ 
formation in the hippocampus [118]. Studies in rats in 
Alzheimer’s disease have shown that LPS increases TLR4, 
exacerbates cognitive impairment, and exacerbates 
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neuronal apoptosis [119]. IL-1 overexpression led to an 
increase in tau phosphorylation. [120].

Alterations in the tryptophan-kynurenine metabolism 
have been linked to yet another connection between 
the microbiota and Alzheimer’s disease. In this path-
way, there are 4 main metabolites: quinolinic acid (QA), 
3-hydroxykynurenine (3-HK), kynurenic acid and pico-
linic acid. In case of changes in the ratios of these metab-
olites, 3-HK and QA metabolites may become neurotoxic 
and cause microglia activation and cell death. Particu-
larly, A group of essential tryptophan-metabolizing 
enzymes in the kynurenine pathway called indoleamine 
2,3-dioxygenase 1 (IDO-1), is stimulated by the proin-
flammatory cytokines IFN-γ and TNF-α and has been 
found to settle in similar sites with Aβ plaques. The 
kynurenic acid and picolinic acid obtained in this path-
way have neuroprotective effects [115, 121].

The possibility that bile acids play a role in Alzheimer’s 
disease is another mechanism demonstrating the connec-
tion between the microbiota and the disease. Bile acids 
are converted to secondary bile acids in the intestines. 
It has been suggested that the reduction in cognitive 
function may be partly due to the cytotoxic properties 
of deoxycholic acid, which can disrupt the blood brain 
barrier and penetrate brain tissue [115]. In addition, 
the synthesis of neurotransmitters such as dopamine, 
noradrenaline, acetylcholine, serotonin, GABA, and his-
tamine take place by the microbiota. In the case of dysbi-
osis, a decrease in acetylcholine, GABA, serotonin levels, 
BDNF, neurogenesis and neuronal growth may occur. 

Increased nitric oxide levels increase oxidative stress 
[111, 122]. Figure 2 summarizes the relationship between 
dysbiosis in the microbiota and Alzheimer’s disease.

It has been emphasized that probiotic/prebiotic sup-
plementation, depending on the changes in the microbi-
ota, may have a positive effect by reducing inflammation 
through the rearrangement of the microbiota, improv-
ing cognitive function, and reducing Aβ and tau proteins 
[123]. Human and animal studies on probiotic supple-
mentation in Alzheimer’s disease are given in Table 2 and 
Table 3. Lactobacillus and Bifidobacterium bacteria were 
generally used in both study types. Probiotics showed 
effects on kynurenine pathway, BDNF level, microbiota 
composition, inflammation, oxidative stress, cognitive 
performance, Aβ plaques, SCFAs levels [65–67, 72–75, 
77, 78, 124]. Although the effect of probiotic supplemen-
tation in Alzheimer’s disease on renin angiotensin system 
is not fully evaluated, Angiotensin (1–7)-expressing pro-
biotic bacteria Lactobacillus paracasei (LP) raised serum 
serotonin and the neuroprotective biomarker 2-picolinic 
acid, kynurenine aminotransferase II mRNA expression, 
angiotensin (1–7) and reduced neuro-inflammatory gene 
expression in the pre-frontal cortex and serum angio-
tensin II levels [125, 126]. In another study conducted in 
obese mice, orally Bifidobacterium longum supplementa-
tion increased in Mas receptor expression and angioten-
sin converting enzyme 2 (ACE2) levels [127].

Most of the recent studies on this disease in the accu-
mulated literature are animal studies, and studies on 

Fig. 2  Possible effects of dysbiosis in the microbiota in Alzheimer’s disease
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humans are more limited. Therefore, studies on humans 
are needed.

Parkinson’s disease
Parkinson’s disease is a common neurodegenerative con-
dition marked by diminished motor abilities brought 
on by dopaminergic nigrostriatal system dysfunction 
[128]. The disorder is brought on by the selective death 
of dopaminergic neurons in the substantia nigra, which 
lowers the levels of the neurotransmitter in the striatum 
and may result in abnormal motor control. Bradykinesia, 
resting tremor, rigidity, postural instability, and muscle 
tone and are all motor symptoms. In addition, a few non-
motor symptoms such as sleep disturbances, loss of smell, 
dementia, psychosis, fatigue, pain anxiety, depression, 
hypophonia, dysphagia, and autonomic dysfunctions may 
be observed in Parkinson’s patients. Parkinson’s patients 
may also experience a number of non-motor symptoms, 
including sleep disturbances, loss of smell, dementia, 
psychosis, fatigue, pain anxiety, depression, hypophonia, 
dysphagia, and autonomic dysfunctions [129, 130].

Parkinson’s disease has a multifactorial etiology, possi-
bly resulting from the combined effects of environmen-
tal and genetic factors. Toxic chemical exposure, head 
injury, environmental factors, genetic and epigenetic risk 
factors, and aging are the main factors associated with 
Parkinson’s [131, 132]. Depending on these factors, fac-
tors such as α-synuclein misfolding and accumulation, 
oxidative stress state, decreased mitochondrial com-
plex 1 activity, mitochondrial damage, abnormalities in 
adaptive and innate immune response, proinflammatory 
cytokines and inflammatory cell activation may affect the 
pathogenesis of Parkinson’s disease [131]. At the same 
time, the renin angiotensin system is associated with Par-
kinson’s disease. Angiotensin II is a pro-inflammatory 
peptide that can activate the NADPH-dependent oxi-
dase complex, causing the formation of ROS, which may 
lead to the death of dopaminergic cells [133]. AT 1 and 
AT 2 receptors were associated with dopaminergic sys-
tem [134]. Angiotensin converting enzyme activity and 
Angiotensin II levels were elevated by dopamin degener-
ation. Treatment with AT1 antagonists in rats decreased 
the loss of dopaminergic cells and microglial activation 
brought on by 6-OHDA [135]. Inhibited angiotensin II 
AT1 receptors led to increased D1 receptor activation, 
decreased in the neurotoxin-induced levels of lipid per-
oxidation and protein oxidation, as well as the death of 
dopaminergic neurons [136, 137].

Additionally to these elements, it has been revealed 
that the gut-brain axis may be effective in the patho-
genesis of Parkinson’s Disease. It has been shown 
that there is a change in the microbiota of Parkinson’s 
patients. In a meta-analysis study, it was observed that 

Akkermansiaceae and Catabacter levels increased, Rose-
buria, Faecalibacterium and Lachnospiraceae ND3007 
levels decreased in Parkinson’s patients [138]. Studies 
have shown changes in many bacterial strains in the case 
of Parkinson’s disease, and their levels have increased or 
decreased (Table  4). These individuals also experienced 
alterations in their microbiota, as well as carbohydrate 
fermentation, a reduction in butyrate synthesis ability, 
proteolytic fermentation, and the development of dan-
gerous amino acid metabolites such p-cresol and pheny-
lacetylglutamine [139–145]. Changes in the microbiota 
have also been associated with symptoms. Bacteroides 
levels were increased more in Parkinson patients without 
tremor than in patients with tremor. Microbiota change 
has been associated with increased levels of IFN-γ and 
TNF-α. Increase in Bacteroides level was associated with 
TNF-α, increase in Verrucomicrobia strain was associated 
with IFN-γ [142]. It has been found that fecal branched-
chain amino acid levels and aromatic amino acid con-
centrations are decreased in individuals with Parkinson’s 
disease [145]. Considering the changes in the microbiota, 
studies have shown that SCFAs (acetate, butyrate, propi-
onate) levels decrease in Parkinson’s patients. In particu-
lar, it has been demonstrated that there is a decrease in 
propionate levels [146–148].

Metabolites, neurotransmitters, vitamins, hormones, 
pathogenic peptides, cytokines, and neurotoxins secreted 
as a result of microbiota can be associated with Parkin-
son’s Disease. Intestinal bacteria can synthesize various 
neurotransmitters such as GABA, 5-hydroxytryptamine 
(5-HT), dopamine or SCFAs [149]. Increased intestinal 
permeability and dysbiosis in the microbiota cause an 
increase in systemic inflammation (CRP, IL-6, TNF-α, 
IL-1β), changes in SCFAs, decrease in neurotransmit-
ters such as GABA, and change in T-reg cell expression 
[150]. Through the gut-brain axis, intestinal dysbiosis can 
result in an increase in T helper cells, proinflammatory 
cytokines, and LPS, resulting in increased intestine and 
blood–brain barrier permeability [151]. In case of disrup-
tion of the crostalk in the intestinal-brain axis, abnormal 
α-synuclein fibrils can accumulate in the ENS, glial cell 
dysfunction, and inflammation in the ENS can occur. 
Increased penetration of microbiota-generated sub-
stances across the blood–brain barrier is associated with 
an increase in Parkinson’s disease symptoms through the 
death of dopaminergic neurons, neuroinflammation, and 
an increase in α-synuclein [152].

Synucleinopathy involving the accumulation of insolu-
ble polymers of α-synuclein with Lewy bodies proteins 
has been found in Parkinson’s patients. Lewy bodies 
reduce neuronal growth and cause neurodegeneration 
[149]. Alterations in the gut microbiota result in aber-
rant products that have toxic effects on the peripheral gut 
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ganglia and lead to an excessive synthesis of α-synuclein. 
α-synuclein uses the medulla oblongata, vagus nerve, and 
brain stem to reach the cortex, thereby affecting damage 
to neurons in the central system [153].

A decrease in SCFAs may occur in patients with Par-
kinson’s disease [146–148]. SCFAs are effective in 
preventing dopaminergic neuronal loss, reducing neu-
roinflammation, regulating microglia function, preserv-
ing blood–brain barrier function, regulating the growth, 
differentiation and survival of synapses, regulating neu-
rotropic factor secretion (BDNF, GDNF glial-derived 
neurotropic factor), maintaining the intestinal barrier by 
down-regulating TLR expression, decreasing proinflam-
matory cytokines, increasing anti-inflammatory cytokine 
production and decreasing oxidative stress [154]. It has 
been found that propionate supplementation regulates 
zonula occludens-1 and occludin and has a positive 
effect on motor behavior and intestinal epithelial bar-
rier through Akt signaling pathway [147]. In addition, 
it was stated that as a result of FMT, microbiota dys-
biosis decreased, fecal SCFAs increased, physical disor-
ders were alleviated, and dopamine and serotonin levels 
increased in Parkinson’s patients [155].

For all these reasons, it has been emphasized that 
probiotic supplementation may have positive effects in 
Parkinson’s patients. It has been stated that increasing 
the protection of dopaminergic neurons, reducing pain, 
inflammation, behavioral changes and oxidative stress 
can be achieved by reducing gastrointestinal motility, 

pathogenic bacteria and gastrointestinal abnormalities 
[156].

In Fig.  3, the relationship between dysbiosis in the 
microbiota and Parkinson’s disease is summarized.

Human and animal studies examining the effect of 
probiotic supplementation for Parkinson’s disease are 
listed in Table 2 and Table 3. Generally, Lactobacillus and 
Bifidobacterium strain bacteria were used in both study 
types. Probiotic supplementation showed effects on 
motor activity, BDNF level, microbiota dysbiosis, synap-
tic dysfunction, memory, inflammation, oxidative stress, 
cognitive performance, dopaminergic cell death, SCFAs 
levels. Figure  4 summarizes the general effects of pro-
biotic supplementation in Parkinson’s patients [69–71, 
80–86]. Although there are animal studies to elucidate 
the mechanisms in Parkinson’s disease, human studies on 
probiotic supplementation in recent years are limited. In 
order to assess the impact of supplementation in humans, 
it is crucial to expand the number of research.

Future conflicts and safety
LBPs often do not exert their biological effects by reach-
ing distant organs, tissues, or receptors or by acting 
directly on a defined target. Instead, they have an impact 
on the host microbiota through suppressing pathogens 
[157], generating active molecules/metabolites [65, 74, 
158, 159], by modulating mucosal immune system activ-
ity [160, 161] or by modulating nervous system activity 
[77, 79, 158, 162]. These effects could all or part of them 

Table 4  Potential change in microbiota composition in Parkinson’s condition

Increments Descendants Reference

Verrucomicrobiaceae, Bifidobacteriaceae, Bifidobacterium, Streptococcaceae, Desulfohalo-
biaceae, Akkermansia, Escherichia, Prosthecobacter, Streptococcus, Clostridium, Serratia, 
Enterobacter

Bacteroidaceae, Lachnospiraceae, Brevibac-
teriaceae, Sphingobacteriaceae, Bacteroides, 
Brevibacterium,Blautia, Odoribacter, Lachnospira, 
Butyrivibrio, Roseburia, Pseudobutyrivibrio, Doli-
chospermum, Coprococcus,

[139]

Christensenellaceae, Desulfovibrionaceae, Bifidobacterium, Bilophila, Akkermansia Lachnospiraceae, Faecalibacterium [140]

Christensenella, Catabacter, Lactobacillus, Oscillospira, Bifidobacterium, Christensenella 
minuta, Catabacter hongkongensis, Lactobacillus mucosae, Ruminococcus bromii, and 
Papillibacter cinnamivorans

Dorea, Bacteroides, Prevotella, Faecalibacterium, 
Bacteroides massiliensis, Stoquefichus massiliensis, 
Bacteroides coprocola, Dorea longicatena, Copro-
coccus eutactus, Ruminococcus callidus, Blautia 
glucerasea, Prevotella copri, Bacteroides dorei, 
Bacteroides plebeus

[141]

Verrucomicrobia, Mucispirillum, Porphyromonas, Lactobacillus, Parabacteroides Prevotella [142]

Clostridium XVIII, Clostridium IV, Sphingomonas, Butyricicoccus Holdemania, Aquabacte-
rium, Anaerotruncus

Lactobacillus, Sediminibacterium [143]

Lactobacillaceae Lactobacillus
Lachnospiraceae
NK4A136, Bifidobacteriaceae Bifidobacterium, Desulfovibrionaceae
Bilophila, Lachnospiraceae Tyzzerella

Lachnospiraceae Blautia
Lachnospiraceae Fusica-
tenibacter

[144]

Rikenellaceae_RC9_gut_group, Bifidobacterium, Parabacteroides, Actinobacteria,
Bacteroidetes

Faecalibacterium [145]
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happen simultaneously, mediating various sorts of signals 
and activating distinct physiological pathways within the 
host. There are several interconnected systems in which 
LBPs can potentially alter brain function directly and/or 
indirectly (Fig.  5). These include specifically the endo-
crine [163], parasympathetic autonomic (vagus nerve) 
[164] and immune system [165]. All these situations can 

also affect cognitive and behavioral processes, which can 
cause behavioral changes [41].

One of the most important points is to demonstrate 
the quality, efficacy and safety of LBPs due to the prod-
uct’s vivid properties and often multifactorial mode of 
action. Thus, the global profit-risk ratio can be evalu-
ated by determining the features and risks of the product 

Fig. 3  Possible effects of dysbiosis in the microbiota in Parkinson’s disease

Fig. 4  Some potential effects of LBPs supplementation in Parkinson’s disease
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components and strains, as well as the characteristics and 
risks of the target population [12, 166].

The risks to be considered in the LBP risk analysis 
regarding the patient are the risks associated with the 
ingestion of the live product. These include nature of 
the target, mode of action, dosage, formulation, route 
of administration, biodistribution in the intended popu-
lation, pathophysiology, patient’s characteristics (age, 
gender, genetics, ethnicity, microbiome composition, 
environment, lifestyle, diet), special populations associ-
ated risks (pregnant, premature babies, children, elderly, 
critically illness), patient’s concomitant medication, risk 
for entourage. Non-clinical toxic/safety studies that take 
into account the risks associated with the targeted popu-
lation (in vitro, ex vivo, methods/models developed with 
appropriate animal models) and then first in human/early 
clinical trials are required. If one or more of the risks 
revealed by the risk analysis is affected by dosage, toxic-
ity studies should include multiple dosages to provide 
and document information for human translation. Con-
tingency plan should be developed the event of serious 
negative effects on the target population [166].

Conclusions
Recent advances in human and animal studies revealed 
that the gut microbiome and especially dysbiosis can 
cause mood disorders, neurodevelopmental and neu-
rodegenerative conditions by communicating the gut-
brain axis to communicate with the brain. LBPs, a recent 
emerging class of therapeutics based on probiotics and 
live bacterias, are promising for preventing and treat-
ing these gut brain axis related conditions and heath 

problems. Although there is increasing evidence to sug-
gest that LBPs have a stabilizing effect on the gut-brain 
axis [65, 74, 77, 79, 157–162] results are not consistent 
because of lack of control for certain variables used in 
studies, such as strain, dose, length of treatment, placebo 
control, sample size, mixed male/female patient popula-
tion, and other study design issues, are major barriers in 
this regard.

Disease-specific probiotic strains need to be identi-
fied. The duration of probiotic dose administration and 
the monitoring of the results of probiotic use should 
also be taken into account at the same time. The quality 
of the studies will be improved by integrating informa-
tion on food consumption of people whose effects on the 
gut microbiota are known (for self-human studies), in 
addition to the probiotics employed in the experiments. 
Gender should also be emphasized for each condition 
in order to determine whether it affects the disease or 
not. Future research can remark on the usage of probi-
otics specific to the disease and gender in this direction. 
Additionally, it’s believed that standardizing the scales 
used in research to assess disease and symptom indica-
tors will be helpful in assessing the impact of probiotics 
on the disease. Finally, comparing the study’s findings to 
those from the biological samples will aid in understand-
ing how probiotics affect disease and metabolism.

Regarding safety, the general opinion is that commonly 
used strains such as Lactobacillus and Bifidobacteria 
are safe. More thorough safety and efficacy studies will 
be required as the field develops and a greater range of 
possibilities when novel therapies begin to be examined. 
There is a need for more multiple and specific target 

Fig. 5  LBPs and gut-brain interaction (adapted from reference [26])
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studies to be carried out considering all risks to elucidate 
the mechanism and strain specificity. The publication of 
subject-specific guidelines and public–private collabora-
tion and extensive partnerships are required first to iden-
tify and develop LBPs that can be successful as specific 
therapeutics for safe and specific modulation of the gut 
microbiota-brain axis.
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