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Early life is a critical time window for the neonatal gut to be

progressively populated with different bacterial species that

collectively promote gut maturation. A fully developed and

healthy gut microbiome in neonates is an important driver for

the development of other aspects of health. Unlike the relatively

stable gut microbiome in adults, the developing gut

microbiome in neonates exhibits higher plasticity and

adaptability. This also underscores the unique window of

opportunity for intervention or preventive measures to improve

long-term health through modulations of the gut microbiome in

early life. Better understanding of the neonatal gut microbiome

— how it arises and how it impacts immune cell development —

will help us appreciate the underpinnings of immune-related

diseases. Here, we examine recent findings on the neonatal gut

microbiome and discuss their implications for understanding

this important driver of the maturation of the immune system

and immunity against infections in early life.
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Introduction
Emerging studies have unraveled important functions of

the gut microbiome in supporting the development of the

immune system, host metabolism and colonization resis-

tance to enteric pathogens. These functions of the gut

microbiome are even more critical during early life [1–3].

Establishment of symbiosis between the immune system

and the gut microbiome, as suggested by more recent

studies, heavily influences the susceptibility or resistance

to various diseases later in life [4,5]. Because of immatu-

rity of the immune system, neonates are more susceptible

to infections. Preterm birth and antibiotic use are

associated with increased gut inflammation and enteric

infection. Furthermore, recent reports uncovered links
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between altered gut microbiome and metabolome in early

life and increased susceptibility to the development of

food allergy, asthma and autism [6��,7��,8], all of which are

on the rise in recent decades while the underlying causes

remain largely undefined. Conflicting results from multi-

ple recent studies have left the notion of in utero gut

microbiome still unsettled [9,10]. The neonatal gut

microenvironment is distinct from the adult gut and only

conducive to the colonization of selective bacterial spe-

cies progressively. In parallel to the dynamic changes of

the neonatal gut microbiome and gut environment, the

immune cells in the gut are gradually and sequentially

matured and cooperate in a concerted effort to promote

host-microbe symbiosis while minimizing unwanted

immune reaction to gut bacteria. In the meantime, neo-

natal immunity against enteric pathogens relies heavily

on maternal immunoglobulins. Insights into how the gut

microbiome is developed in early life and the associated

changes of the gut immune cells in parallel in early life

can be harnessed in developing gut microbiome-based

therapies as preventive measures to improve neonatal

health.

In utero microbial stimulation
The maternal gut microbiome can potentially influence

the maturation of the fetal epithelium and immune cells

without the localization of live bacteria to the fetal gut, as

bacterial products, such as agonists of toll-like receptors

(TLRs) or metabolites such as short-chain fatty acids

(SCFAs), likely circulate through the placenta to the

fetus. Interestingly, a study using an engineered Escher-
ichia coli demonstrated transient gestational colonization

increases intestinal group 3 innate lymphoid cells (ILC3)

and F4/80+CD11c+ mononuclear cells in neonates [11].

In addition, pregnant mice given a high-fiber diet resulted

changes in the gut microbiome and increased SCFAs; this

in utero stimulation resulted in the suppression of allergic

airways disease (AAD) in the offspring possibly through

induction of regulatory T cells (Tregs) by the increased

amounts of SCFAs [5]. A recent study showed that

maternal-microbiota-produced SCFAs, propionate in par-

ticular, were sensed by embryonic intestinal epithelium

cells via GPRs to facilitate the development of enter-

oendocrine cells in the fetal intestine [12��]. Collectively,

these studies demonstrate in utero and postnantal effects

of maternal gut microbiome-derived SCFAs that may be

important for maintenance of enteric energy homeostasis

and prevention of metabolic syndrome postnatally. These

studies highlight the role of in utero microbial stimula-

tion, likely through the maternal gut microbiome, in

modulating both prenatal and postnatal immune and

intestinal cell development.
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Albeit still contentious, emerging evidence suggests in

utero bacterial colonization as early as the first trimester in

humans [13,14��]. A recent study by Susan Lynch’s group

presented evidence of the seeding of bacteria in the fetal

intestine, which were predominantly Micrococcaceae and

Lactobacillaceae [14��]. A viable fetal Micrococcus isolate

was shown to inhibit IFN-g production by human T cells

ex vivo, hence suggesting the ability of these fetal bacteria

to promote immune tolerance [14��]. A caveat of this

study, however, is the lack of clinical information of

maternal health; it remains unclear whether the presence

of bacteria in the fetal intestine was due to maternal

infection or other inflammatory conditions that would

permit localization of bacteria to the fetal intestine. In
utero bacterial colonization of the fetal intestine might be

in line with previous reports of the fetal intestine being

populated with dendritic cells and memory T cells that

were speculated to be induced by microbial antigens [15�

]. Another study by Aagard et al. also demonstrated

detection of bacterial DNAs in human placental tissues

[16]. However, most studies supporting the presence of

bacteria in utero thus far relied on culture-independent

detection of low-abundance bacterial DNA in placental

tissues or amniotic fluid with high background noise and

false positives [9,17]. More recently, other studies using

more rigorous controls suggest that bacterial DNA

detected in placental tisseus from previous studies might

have been a result of contaminations during the DNA

purification process, hence casting doubt on the so-called

‘in utero colonization’ or ‘placental microbiome’ [18–20].

There might be pre-existing maternal conditions such as

gestational diabetes, urinary tract or vaginal infections

that increase the likelihood of microbial translocation and

colonization in the placenta. While circulating maternal

bacterial products can influence fetal development, in

utero microbial colonization might be very unlikely in a

healthy pregnancy.

Postnatal bacterial colonization of the
neonatal gut
Postnatal colonization of bacteria in the neonatal gut is

heavily influenced by the mode of delivery and dietary

components. Previously, it was shown that the infant

microbiome right after birth was dependent on the deliv-

ery mode, but that these changes waned after six weeks,

suggesting that age and gut maturation are more impor-

tant factors that drive the progression of the intestinal gut

microbiome in neonates [21,22]. However, more recent

studies of the infant microbiome in larger cohorts of

infants found that vaginally-delivered infants had higher

abundance of Bifidobacterium species and reduced abun-

dance of potentially pathogenic Enterococcus, Enterobacter,
and Klebsiella species compared to the gut microbiome in

infants delivered through Caesarian section (C-section)

[23��,24], which was characterized with enrichment with

skin and oral commensal bacteria, such as Staphylococcus,
Corynebacterium, Streptococcus, and Propionibacterium
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species [25,26��]. In addition, C-section infants displayed

delayed or no colonization of fiber-fermenters Bacteroi-

detes, as well as lower total microbiota diversity through-

out the first two years of life [23��,27]. The delayed

maturation of the gut microbiome in these infants may

delay the development of immune cells such as Tregs and

the maturation of the gut epithelium and mucus layer,

hence potentially increasing the risk of inflammatory

diseases later in life, such as asthma and food allergies.

Additionally, the microbiome differs vastly between for-

mula-fed and breast-fed infants. Breast milk contains

proteins, nutrients, immune factors including immunoglo-

bulins A (IgA) and G (IgG) as well as cytokines, and

maternal bacteria that collectively promote the growth

and development of newborns [28,29]. Maternal IgG

and IgA were reported to cooperate synergistically to

dampen CD4+ T cells in the neonatal gut [30]. A recent

study also reported an important function of maternal gut

microbiota-induced IgG to cross-react with pathogens and

protect neonates against enteric E. coli infection [31]. The

gut microbiome of breastfed infants has less diversity and

included higher levels of Bifidobacterium species and other

bacteria that are capable of metabolizing human milk

oligosaccharides (HMOs) found in breast milk [26��,32].
In fact, the earliest infant gut microbiome was enriched in

genes that facilitate lactate utilization commonly found in

Lactobacilli [33]. Different strains of Bifidobacterium have

different sugar-use profiles, suggesting that differences in

HMO availability can promote the colonization by specific

Bifidobacterium species among different neonates [34�].
Breast milk also has its own microbiome, notably, Proteo-

bacteria, Staphylococcus, and Streptococcus [35,36], which

changes during lactation and differs in mothers depending

on the mode of delivery. Furthermore, breastfed infants

receive about 27% of their gut microbiome from maternal

milk and an additional 10% from the areolar skin during the

first year of life [37]. The introduction of solid food is

associated with higher bacterial loads and diversity, higher

abundance of SCFAs, and a shift in dominance to bacteria

belonging to fiber-fermenters Bacteroides and Firmicutes

[33,38].

Neonatal gut microenvironment
The neonatal gut environment is distinct from a mature

adult gut environment. Notably, traces of oxygen can be

detected in the neonatal gut right after birth, while the

adult gut is almost completely hypoxic [39]. Recent

studies suggested luminal oxygen in the neonatal gut

decreases over a developmental window to allow the

transition from dominance by the first colonizers, typi-

cally facultative anaerobes Lactobacillaceae and Enterobac-
teriaceae, to obligate anaerobes, including Bifidobacterium,
Bacteroides, and Clostridium, during the next several

months [32]. This transition also coincides with the

change from simple sugars/HMOs (derived mainly from

maternal milk) to more complex fibers as the main
Current Opinion in Microbiology 2020, 56:30–37
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components of the infant’s diet. In addition, colon epi-

thelial cells play a critical role in maintaining hypoxia in

the gut lumen through cell metabolism to consume oxy-

gen, thus favoring obligate anaerobes such as Clostridia
that break down dietary fiber and produce SCFAs [40��].
For example, butyrate-producing Clostridia decreases

epithelial oxygenation in the colon triggered by peroxi-

some proliferator-activated receptor gamma (PPARg)
signaling [41,42�]. SCFAs are also a critical energy source

for gut epithelial cells [43]. The gut is considered mature

and ‘adult-like’ when there is increased diversity and

richness of gut bacterial communities as well as a shift

from dominance by facultative anaerobes to dominance

by obligate anaerobes (see Figure 1) [44��].

Besides oxygen, many other factors shape the neonatal

gut environment to select for bacterial species and strains

to thrive, including pH, gut motility, availability of diges-

tive enzymes, as well as host metabolism of complex

carbohydrates, proteins, and lipids [45]. For example,

breast-fed infants were found to have a more acidic

intestinal environment due to the higher abundance of
Figure 1
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The changing gut lumen environment from early life to adulthood affects the

The gut lumen of newborns begins with a higher abundance of oxygen whic

Enterobacteriaceae and Lactobacillaceae immediately after birth. Bifidobact

oligosaccharides (HMOs) in the gut lumen from consumption of maternal br

which leads to the production of SCFAs like butyrate to induce oxygen met

addition to the cessation of breast-feeding and switch to solid foods consis

anaerobes Bacteroidaceae, Porphyromondaceae, Lachnospiraceae, and Ru

and collectively establish a stable gut microbiome in the adult gut.
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SCFAs as a result of the colonization of Bifidobacterium
and Lactobacillus [46,47]. This acidification allows for the

defense of neonatal intestines against common enteric

pathogens while the infant immune system matures.

Additionally, the intestinal epithelium in neonates has

greater permeability to soluble antigens compared to

adults, while lacking small intestinal crypts or antimicro-

bial peptide-producing Paneth cells, which can provide

protection against enteric infections [48,49]. However,

this may be compensated by enterocytes that can produce

cathelin-related antimicrobial peptides (CRAMPs) [50].

In addition, at birth, neonates lack microfold (M) cells

which are found in gut-associated lymphoid tissue

(GALT) of Peyer’s patches and mucosa-associated lym-

phoid tissue (MALT) within the intestine [51]. M cells

begin to increase at postnatal day 8 in mice and reach

adult levels when mice are 2–3 weeks old (Table 1) [51].

While M cells are important for the passage of microbial

antigens to be sensed by dendritic cells for induction of T

cells in the gut draining mesenteric lymph nodes [52], M

cells are also the entry point for enteric pathogens such as
Adult

Bacteroidaceae
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Lachnospiracaea

Ruminococcaea

Complex carbohydrates
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 relative abundance of bacteria.

h allows for the colonization of facultative anaerobes

eriaceae begin to increase due to the simple sugars and human milk

east milk. Simultaneously, Clostridiaceae abundance starts increasing

abolism by the intestinal epithelium. This hypoxic gut environment, in

ting of complex carbohydrates, allows for the colonization of obligate

minococcacea which become the most abundant bacteria as adults
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Table 1

Comparison of the roles of the gut microbiome in the development and maintenance of different immune cells between the neonatal and

adult intestines

Immune cell type Neonate Adult Role of gut microbiome Reference(s)

Treg ++ +++ 1) SCFAs from Clostridia enhance population and function of Tregs

2) Bifidobacterium bifidum induces generation of Tregs

[5,79,61,54��,64,80,81]

CD4 + T cells + +++ Segmented filamentous bacteria induce Th17 cells in adult mice [62,63,82]

B cells + +++ 1) Peptidoglycan from gram-negative bacteria induces recruitment of B

cells to the intestine for maturation

2) In neonates, promotes plasma cell differentiation for induction of IgA

and inhibition of IgE production into adulthood

[83��,84,85]

gd T cells +++ + 1) Promotes gd T cell response in repairing mucosal injury

2) Drives expression of IL-1R and production of IL-17

[86,87�]

DCs + + 1) Microbiota are required for DC accumulation

2) Some Lactobacillus spp. induce maturation/priming

[75,76]

Macrophages + + 1) Recruitment of monocyte precursors to adult gut

2) Transient E. coli colonization in maternal gut during pregnancy

increases population in neonate gut.

[11,57]

Neutrophils + +++ Promotes neutrophil homeostasis in circulation and bone marrow

through induction of IL-17 by intestinal ILCs and increasing G-CSF in the

plasma in neonates

[88,77��]

NK +++ + NK cells are the major mucosal innate lymphoid cells in the human infant

intestine but wane over time

[89,90]

iNKT + +++ Suppresses accumulation by suppressing chemoattractant CXCL16 in

neonates

[58]

Innate lymphoid cells + + 1) Influences the transcriptomes and epigenomes of ILC1 and ILC2 cells in

adults

2) Transient E. coli colonization in maternal gut increases ILC3 in neonates

[11,91]

Microfold (M) cells + +++ Unclear role of gut microbiome [51,92]

Paneth cells + +++ 1) Increases RegIIIg expression after weaning

2) Increases cell population

[48,49,93,94]
Salmonella [53]. Hence, the lack of M cells may favor the

neonate in two ways – by minimizing both T cell activa-

tion and entry of enteric pathogens. Collectively, despite

the immaturity of the neonatal immune system, the

developing gut appears to be ‘designed’ in unique ways

to protect the neonates from enteric infection while

preventing overactivation of gut immune cells.

Effects of gut microbiome on neonatal gut
immune cells
The development to gut immune cells (see Table 1)

requires microbial signals from the gut microbiome in

the neonatal gut [4,5]. A ‘weaning reaction,’ which is the

vigorous immune reaction due to intestinal microbiome

expansion during weaning, triggers transient production of

high levels of IFNg and TNFa by T cells which can be

mitigated by Tregs that are also induced by the gut micro-

biome. Inhibition of this process led to increased risk for

inflammatory diseases as an adult [54��]. Studies of germ-

free mice revealed the requirement for the gut microbiome
www.sciencedirect.com 
in the development of isolated lymphoid follicles (ILFs)

and the population of intra-epithelial lymphocytes (IELs)

in the gut [55,56]. Additionally, the intestinal macrophages

in the neonatal gut are primarily derived from the embry-

onic yolk sac or fetal liver precursors [57]. Around the

weaning period, gut microbiome induces recruitment of

monocytes which differentiate into macrophages [57].

Expansion of intestinal ILC3 and F4/80+CD11c+ mono-

nuclear cells as a result of transient colonization of E. coli in

the maternal gut during pregnancy led to increased expres-

sion of epithelial antibacterial peptides as well as metabo-

lism of microbial molecules [11], both critical for compart-

mentalization of gut commensals within the gut lumen.

Furthermore, invariantnaturalkillerT (iNKT) cellsexist at

low levels in the neonatal colon and start to increase in an

age-dependent manner. The gut microbiome suppresses

the accumulation iNKT cells in the colon by suppressing

the expression of CXCL16 in young mice, an iNKT

chemokine [58], thus limiting the potential of iNKT

cell-mediated gut inflammation [58].
Current Opinion in Microbiology 2020, 56:30–37
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In the adult gut, the microbiota promotes the generation

of colonic Tregs through the generation of SCFAs by

predominantly Clostridium species [54��,59,60]. Micro-

biome-induced Tregs are critical to suppress Th2

response in the context of allergies, or Th1/Th17

response in the context of intestinal inflammation such

as inflammatory bowel disease [61]. However, it remains

still unclear how Tregs are induced in a newborn’s gut

before colonization of Clostridium species. Given the

divergent bacterial species that colonize the small intes-

tine and the colon, the role of the gut microbiome in

promoting Tregs in the small intestine might be inde-

pendent of SCFAs. In addition, naı̈ve T and B cells will

move to peripheral mucosal body sites from primary

lymphoid organs at birth [62]. Interestingly, unlike adults,

this homing of lymphocytes to the intestine does not rely

on the gut microbiome in neonates [63], but is coincided

with a release of thymus-derived regulatory T (tTreg)

cells; the latter might be important to promote tolerance

towards gut bacteria and dietary antigens during this

period [64]. During the postnatal period, neonatal CD4

T cells remain immature due to maternal secretory IgA

(SIgA) and Tregs to prevent auto-reactivity [63]. As the

mice age, they eventually mature to gain effector func-

tions to maintain the epithelial barrier. This delayed

maturation of lymphocytes also occurs in humans, and

increased densities of Tregs were found in human fetal

lymph nodes compared to adults [65,66]. Taken together,

various measures are in place to limit the activation of

adaptive immune cells in the neonatal gut to minimize

autoimmunity as well as unwanted immune reaction to

gut bacteria.

Neonatal immunity
Infection is a major cause of mortality and morbidity in

neonates. Early onset sepsis (within 3 days after birth) is

predominantly caused by group B Streptococcus (GBS)

from GBS + mothers. On the other hand, late onset sepsis

(between day 7 to day 10 following birth) [67] is com-

monly caused by bacteria acquired during the birthing

process or from the environment, such as GBS and E.
coli. Of note, in infants with late-onset sepsis, some of the

causative bacteria found originated from the gut, most

commonly E. coli which is a gut opportunistic pathobiont.

Maternal milk IgG was recently shown to effectively

protect neonatal mice against E. coli enteric infection

[31], thus highlighting the importance of passive immu-

nity via maternal milk. Enteric infection in neonates can

potentially manifest into detrimental sepsis, particularly

in more vulnerable infants such as preterm infants [68].

Prematurity of the gut, including alterations of the gut

microbiome, in preterm infants also increases the risk of

sometimes fatal necrotizing enterocolitis, which is inflam-

mation in the lining of the colon that may lead to

perforation of the intestine, translocation of gut bacteria

and even sepsis [69]. In fact, Pammi et al. found that

dysbiosis in preterm infants before the onset of NEC was
Current Opinion in Microbiology 2020, 56:30–37 
characterized by increased Proteobacteria and decreased

Firmicutes and Bacteroidetes [70]. Supported by various

mouse and human studies, the neonatal gut microbiome

has emerged as a critical factor in the resistance or

susceptibility to infection.

The gut microbiome is likely an integral source to provide

microbial stimulation for priming of innate immune cells

in early life (Table 1). Innate immune cells in neonates

exhibit characteristics indicative of immaturity due to

lack of microbial priming [71]. For example, neutrophils

in neonates are impaired in forming neutrophil extracel-

lular traps (NETs), adhesion to the endothelium, phago-

cytosis, and killing of intracellular pathogens. Antigen

presenting cells (APCs) have lower expression levels of

MHC-II, adhesion, and co-stimulatory molecules, as well

as lower expression of TLRs. In particular, the expression

of TLR3, TLR4, and TLR9 are decreased in the epithe-

lium of the neonatal gut [72,73]. The immaturity of these

first responders to infection likely contributes to the high

vulnerability of neonates to infectious diseases.

In addition, the gut microbiome plays a critical role in

conferring colonization resistance against pathogens or

opportunistic gut-derived pathobionts. This function of

the gut microbiome is even more critical for infants. Group

B Streptococcus (GBS) infection in newborns, a common

cause of early onset sepsis in neonates, can be prevented by

perinatal antibiotic prophylaxis. This antibiotic use how-

ever results in transient imbalance of the maternal vaginal

microbiome which is important in establishing the gut

microbiome in newborns. One study showed perinatal

antibiotics induced dysbiosis in the neonatal gut, with a

significant reduction in Lactobacillus abundance, and that

this dysbiosis was correlated with higher risk of earlyct-

onset sepsis [74]. Some Lactobacillus hasbeen shown to help

in the priming and maturation of dendritic cells [75] [76],

and a decrease in this may causedelayed immune responses

in neonates. In addition, studies have shown dysbiosis of

the neonatal gut microbiome decreases circulating neutro-

phils and colonization resistance to gut pathobionts, thus

substantially increasing the risk of late-onset sepsis in

neonates [77��,78]. Therefore, factors that impede the

normal development of the gut microbiome in infants,

such as preterm birth, C-section delivery, antibiotic use,

and lack of maternal milk-mediated immune protection,

will increase the likelihood of potentially fatal enteric or

systemic infections in infants.

Conclusions
The developing gut microbiome in neonates is particu-

larly vulnerable to environmental or dietary changes;

perturbed gut microbiome in neonates may profoundly

increase the risk of neonatal infections, as well as

inappropriate activation of immune cells later in life, thus

contributing to the development of inflammatory

diseases, such as asthma and allergies. The plastic nature
www.sciencedirect.com
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of the neonatal gut microbiome can be leveraged for

preventive or intervention measures to promote long-

term health by modulations of the gut microbiome, such

as utilization of prebiotics and probiotics, or maternal

colonization of beneficial bacteria. However, our under-

standing of the impact of the neonatal gut microbiome on

neonatal immune cell development and immunity is still

limited. For instance, nutritional immunity has emerged

as a critical aspect of host immunity against infection. The

gut microbiome likely has a modulatory role in regulating

the availability of minerals in the neonate, but up to date

our knowledge of nutritional immunity in neonates

remains limited. How the neonatal gut microbiome is

developed and how it impacts other aspects of health

diverges vastly from our understanding of the adult gut

microbiome, which has been studied more extensively in

various disease contexts. More focused efforts to unco-

vering all the nuances about the neonatal gut microbiome

are needed before innovative and robust gut microbiome-

based therapies can be developed to improve neonatal

health.
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